A Highly Efficient Runtime and Graph Library
for Large Scale Graph Analytics

llie Tanase!, Yinglong Xia!, Lifeng Nai?, Yanbin Liu', Wei Tan'
Jason Crawford!, and Ching-Yung Lin!
'IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
2Georgia Institute of Technology, Atlanta, GA 30332, USA

{igtanase,yxia,ygliu,wtan,ccjason,chingyung}@us.ibm.com

ABSTRACT

Graph analytics on big data is currently a very active area of
research in both industry and academia. To support graph
analytics efficiently a large number of graph processing sys-
tems have emerged targeting various perspectives of a graph
application such as in memory and on disk representations,
persistent storage, database capability, runtimes and execu-
tion models for exploiting parallelism, etc.

In this paper we discuss a novel graph processing system
called System G Native Store which allows for efficient graph
data organization and processing on modern computing ar-
chitectures. In particular we describe a runtime designed
to exploit multiple levels of parallelism and a generic infras-
tructure that allows users to express graphs with various
in memory and persistent storage properties. We experi-
mentally show the efficiency of System G Native Store for
processing graph queries on state-of-the-art platforms.

1. INTRODUCTION

Large scale graph analytics is a very active area of re-
search in both academia and industry. Researchers have
found high impact applications in a wide variety of Big Data
domains, ranging from social media analysis, recommenda-
tion systems, and insider threat detection, to medical di-
agnosis and protein interactions. These applications often
handle a vast collection of entities with various relationship,
which are naturally represented by the graph datastructure.
A graph datastructure G(V, E) consists of a set of vertices V'
and a set of edges E representing relations between various
vertices.

The design of a graph processing system (GPS) includes
two major components: the graph data structures and the
programming model. In this paper we discuss the design
decisions we employed in System G Native Store to create
a flexible graph library that can be tuned and customized
by users based on their application specific needs. For the
graph data structure some of the major decisions to be made
are:

Permission to make digital or hard copies of all or part of thaknfor

personal or classroom use is granted without fee providedtpies are not

made or distributed for profit or commercial advantage and thgies bear
this notice and the full citation on the first page. Copyrigfior components
of this work owned by others than ACM must be honored. Absingatith

credit is permitted. To copy otherwise, or republish, to pwsservers or to

redistribute to lists, requires prior specific permissiod/ana fee. Request

permissions from Permissions@acm.org.
GRADES'14, June 22 - 27 2014, Snowbird, UT, USA
Copyright 2014 ACM 978-1-4503-2982-8/14/06$15.00
http://dx.doi.org/10.1145/2621934.2621945.

Inai3@gatech.edu

Is the graph stored in memory, on disk, or both?

Is the graph directed or undirected ?

Is the graph sparse or dense 7

Are there properties associated with vertices and edges?
Are ACID properties supported?

Depending on a particular problem to be solved, the an-
swers to these questions vary, and often the more function-
ality that is required, the more complicated the design be-
comes. Once the data structure is decided upon, the next
big decision is selecting the programming model exposed to
users. In addition to the datastructure API [3] the pro-
gramming model may include support for graph algorithms,
expressing parallelism on shared memory machines or large
clusters, and support for fault tolerance. As part of the pro-
gramming model users are provided with an interface that
can vary from a full runtime system [9][2][8] to a specialized
query language[11][1].

In the rest of this paper we answer the questions we raised
in this section in the context of a novel graph processing so-
lution called System G Native Store. In Section 2 we discuss
related work, Section 3 provides more details of System G,
Section 4 discusses our graph datastructure design decisions
and Section 5 presents the runtime system. We evaluate
the performance of our GPS in Section 6 and conclude in
Section 7.

2. BACKGROUND AND RELATED WORK

In this section we discuss related projects and we clas-
sify them into three broad categories: graph datastructure
libraries, graph processing frameworks, where the emphasis
is on the programming models, and graph databases, where
the focus is on storage.

Graph libraries: Graph libraries for in-memory-only
processing have been available for a long time. For exam-
ple BOOST Graph library (BGL) [12] provides a generic
graph library where users can customize multiple aspects of
the datastructure including directness, in memory storage,
and vertex and edge properties. This flexibility gives users
great power in customizing the datastructure for their par-
ticular needs. Parallel BOOST graph library [6], STAPL [7]
and Galois [10], provide in memory parallel graph datastruc-
tures. All these projects provide generic algorithms to access
all vertices and edges, possibly in parallel, without knowl-
edge of the underlying in-memory storage implementation.
System G Native Store employs a similar design philosophy
with these libraries but it extends these works with support
for persistent storage and a flexible runtime for better work

scheduling.

Graph processing frameworks: Pregel and Giraph [9,
2] employs a parallel programming model called Bulk Syn-
chronous Parallel (BSP) where the computation consists of
a sequence of iterations. In each iteration, the framework
invokes a user-defined function for each vertex in parallel.
This function usually reads messages sent to this vertex from
last iteration, sends messages to other vertices that will be
processed at the next iteration, and modifies the state of
this vertex and its outgoing edges. GraphLab [8] is a par-
allel programming and computation framework targeted for
sparse data and iterative graph algorithms. Pregel/Giraph
and GraphLab are good at processing sparse data with local
dependencies using iterative algorithms. However they are
not designed to answer ad hoc queries and process graph
with rich properties.

TinkerPop [3] is an open-source graph ecosystem consist-
ing of key interfaces/tools needed in the graph processing
space including the property graph model (Blueprints), data
flow (Pipes), graph traversal and manipulation (Gremlin),
graph-object mapping (Frames), graph algorithms (Furnace)
and graph server (Rexster). Interfaces defined by TinkerPop
are becoming popular in the graph community. As an ex-
ample, Titan [4] adheres to a lot of APIs defined by Tinker-
Pop and uses data stores such as HBase and Cassandra as
the scale-out persistent layer. TinkerPop focuses on defin-
ing data exchange formats, protocols and APIs, rather than
offering a software with good performance.

Graph stores: Neo4J [11] provides a disk-based, pointer-
chasing graph storage model. It stores graph vertices and
edges in a denormalized, fixed-length structure and uses
pointer-chasing instead of index-based method to visit them.
By this means, it avoids index access and provides better
graph traversal performance than disk-based RDBMS im-
plementations.

3. SYSTEM G GRAPH DATABASE OVERVIEW

Comprehensive graph processing solution: System
G Graph Database has been actively developed by IBM,
where G stands for graph. It provides a whole spectrum
graph solution shown in Figure 1, covering graph visualiza-
tion, analytics, runtimes, and storage. Although System G
Graph Database includes a version based on HBase/HDF'S [5]
and an interface using DB2/DB2RDF or TinkerPop com-
patible DBs; in this paper we focus on a novel version called
System G Native Store, which is independent of any existing
product or open source software.

High performance graph runtime: System G Graph
Database provides a generic C++ sequential runtime library,
a concurrent runtime library for multithreading computing
platforms, and a distributed runtime library for computer
clusters. For distributed library, it offers an efficient com-
munication layer implemented by the IBM Parallel Active
Message Inference (PAMI) and the Remote Direct Memory
Access (RDMA). All libraries are highly optimized towards
state-of-the-art computer architectures such as POWER mul-
ticore. Additional graph computing accelerators based on
FPGA and GPU are reserved for exploring highly parallel
implementation for some graph computing primitives.

Native Graph Storage: Despite of several storage sup-
ported by System G Graph Database shown in Figure 1, we
focus on the Native Store for graphs. This store persists a
graph by saving its structure and properties on both vertices

Visualization 12 3D Network Network Huge Network i Geo Network raphical Model|
Visualization Propagation Visualization Visualization Visualization
Analytics Graph Search Network Info Flow Bayesian Networks

Graph Query Shortest Paths | Latent Net Inference
Ego Net Features | Graph Matching)] Graph Sampling | Markov Networks

Graph Processing Interface

Shared Memory Distr. Memory
nsights Infosphere Graph Library Graph Library
Streams

Mad00 (ES) Generic Graph Graph Communication
P Library Layer (PAMI/RDMA)

Graph Data Interface

GBase (update, scan, -
operators, indexing)) TinkerPop Natve st
—— - -

S
Figure 1: System G Graph Database provides whole
spectrum solution for graph processing

Middleware

Graph
Accelerator
FPGA/HMC

Database

and edges into a set of files. Since it is a file-based store im-
plemented using C++, it is not only highly efficient, but also
very portable to various file systems and storage hardware.
The graph structure and properties are stored separately,
and the properties can be further divided into subgroups.
Thus, it avoids loading unnecessary data for analytics. The
Native Store also supports multiple versioning at the vertex
level, which is the basis for the bi-temp feature and trans-
action management in database.

4. GENERIC GRAPH DATA STRUCTURE

A graph consists of a collection of vertices and edges. In
this section we discuss the functionality our graph library
supports as we answer the questions raised in the introduc-
tion. Our in memory graph representation uses the adja-
cency list to store vertices and edges. Thus, the graph stores
a set of vertices and each vertex individually maintains the
list of its neighboring edges or its adjacency. We have cho-
sen the adjacency list versus either representations like Com-
pressed Sparse Row (CSR), list of edges or adjacency matrix
due to its high flexibility in accommodating dynamic graphs
where vertices and edges are added and removed while si-
multaneous supporting traversals.

Similar to BGL or STAPL our framework employs a generic
C++ design using templates to allow users to customize a
particular graph datastructure. The core graph data struc-
ture models a single property graph. In this model the graph
stores one property for each vertex and one property for each
edge as shown in Figure 2, Lines 1-5.

Users can define different graph classes by appropriately
customizing any of the available template arguments. The
first template argument is the vertex property; the second
template argument is the edge property; the third argument
specifies if the graph is directed, undirected or directed with
predecessors; the last template argument allows for fine, low
level customizations related to the graph storage like the
particular storage datastructure for vertices and edges.

We selected a generic programming design as it provides
our users the polymorphism flexibility without the runtime
overhead of virtual inheritance. Independent of the template
arguments used to instantiate it, the graph provides an in-
terface to add and delete vertices and edges and to access
the data. The interface is similar to Tinkerpop BluePrints
APIL.

The most important methods of the SG graph class are

template <class VertexProperty ,
class EdgeProperty ,
class DIRECTEDNESS,
class Traits>
class Graph {
typedef vertex_descriptor;
typedef edge_descriptor;
typedef vertex_iterator;
typedef edge_iterator;
vertex_descriptor add_vertex(VertexProperty&);
edge_descriptor add_edge(vertex_descriptor vl,
vertex_descriptor v2,
edge_property &);
vertex_iterator find_vertex (vertex_descriptor);
}

typedef Graph<int ,double ,DIRECTED> graphl_type;

class my_vertex_property {...}
typedef Graph<my_vertex_property , double,
UNDIRECTED> user_graph2_type;

template <class G>
process_vertex (G& g,vertex_descriptor vid){
vertex_iterator vit = g.find_vertex (vid);
//process wvertex property
// vit—>property ();
edge_iterator eit = vit—>edges_begin ();
for (;eit != vit—>edges_end();++eit){
//process edge identified by eit
// eit—>target (); eit—>property ();...

Figure 2: System G Native Store Graph Interface

add_vertex, add_edge, and find vertex. add_vertex shown
in Figure 2, Line 10 creates a new vertex in the graph and
returns the vertex identifier associated with it. The vertex
identifier can be used to access and modify the vertex such as
adding edges to the vertex, obtaining an iterator (pointer) to
the vertex to inspect its properties or its adjacency list, etc.
The method add_edge shown in Figure 2, Line 11, creates
a new edge in the graph between two vertices and with a
given initial property. Line 14 shows find_vertex which
returns an iterator pointing to the vertex data structure.
The interface includes additional methods that can’t be all
described here due to the lack of space.

4.1 Vertex processing

In Figure 2, lines 23-33 we show a simple example of a
vertex based computation. First, a vertex is always iden-
tified by a unique vertex identifier and the first step to be
done before querying properties of the vertex is to map from
the vertex identifier to a vertex reference (vertex iterator).
Having access to a vertex iterator, one can access the ver-
tex properties (Figure 2, line 27) and information about the
adjacency list as shown in Figure 2, lines 28, 29. Traversing
all outgoing edges of a vertex can be accomplished with the
loop in Figure 2, lines 28-33 and using an edge iterator one
can access information about a particular edge like source,
target and edge property. All other graph computations in
our framework can be expressed as compositions of the pat-
tern included in this example.

4.2 Native Store graph classes hierarchy

The generic graph datastructure introduced in previous
section provides enough functionality for a large category
of in-memory graph algorithms and analytics. In this sec-

[Graph<VertexProperty, EdgeProperty, Directness, Traits> J

N

'
I
l

dg -7
[MultiPropertyGraph<StorageType> J

/ >
' [inDiskGraph<VertexProperty, EdgeProperty, Directness, Traits> J

Figure 3: Native Store class hierarchy. The base
graph class is in memory only. The inDiskGraph de-
rives from it and adds storage capability. The mul-
tiproperty graph can derive from either base graph
or inDiskGraph as requested by user.

\

Figure 4: Multi property graph

tion we introduce two more important extensions of our core
graph datastructure: multiproperty graph and graph with
persistent storage as shown in Figure 3.

4.3 Multiproperty graph

A common graph used for graph analytics is the multi-
property graph where each vertex and edge can have an ar-
bitrary number of properties. This functionality is provided
by our graph framework by instantiating the base graph class
with a multiproperty class for both vertices and edges. A
multiproperty class is essentially a map data structure allow-
ing dynamic insertion and deletion of an arbitrary number
of key, value pairs.

In Figure 4 we show a depiction of a multiproperty graph.
Each vertex has associated a vertex typeid which is a mecha-
nism of grouping the vertices based on similarity. For exam-
ple in a social network graph where we have people, forums,
and posts as vertices one can associate a typeid with each
group of vertices and later perform analytics over vertices
of a particular typeid. In addition to the typeid each vertex
can store an arbitrary number of key, value pairs that we will
refer to as property names and property values. Similarly for
edges we associate an edge label and an arbitrary number of
property, value pairs. Additionally the multiproperty graph
is directed, but it does keep track of the predecessors for
each vertex. Thus one can iterate efficiently over outgoing
and incoming edges of a particular vertex.

In addition to the multiproperty support already men-
tioned a property graph provides an additional interface to
the user for allowing traversal of vertices and edges of a par-
ticular typeid or label, and additional support for indexing.
For example if for every vertex there is a property called
“LastName”, one may want to search a vertex where “Last-
Name” has a particular value. The multiproperty graph al-
lows users to specify an index on a particular property name
and subsequent operations on graph will have to maintain

Version management

11

Graph
property

Graph
structure

Figure 5: Property graph persistency in System G
Native Store

the index and use it for faster lookups.

4.4 Persistent graph

System G provides persistent storage for property graphs
as a natural extension of the in-memory graph data struc-
ture. Compared to existing graph databases, this graph
storage is featured by its analytic amenable design. The
basic idea of the storage is shown in Figure 5, which can be
described as follows:

Separating structure and property: System G stores
graph structure and properties separately. The graph struc-
ture breaks down into the adjacent incoming edges and out-
going edges for each vertex. Such separation avoids loading
graph properties for analytics defined merely on graph topol-
ogy, e.g. breadth first search (BFS) and graph betweenness.
This not only reduces disk 10 consumption but also critically
improves memory utilization and reduces partition count for
large shared-memory graphs.

Efficient graph loading: System G allows loading a
graph on demand, where we start with an empty graph in
memory and incrementally load the vertices and edges as
needed. This feature allows us to launch a graph analytics
fast and also handle graphs larger than the size of memory.
System G uses the internal vertex IDs and edge IDs as offsets
to store the graph data on disk. Regardless of the size of
the graph, it locates the vertex data immediately without
incurring any scan or searching. In addition, it is worth
noting that it stores adjacent edges to a vertex contiguously,
unlike some existing systems e.g. Neo4j. Therefore, System
G achieves improved data locality.

Versioning support: System G persistent graphs asso-
ciate time stamps with each vertex. Therefore, it allows
transactions and rollback in graph operations, which is crit-
ical in many real applications.

Portability: System G persistent graph utilizes a set of
files to store graph data and therefore can be virtually hosted
in most file systems and random access hardware, such as
regular Linux file system and HDFS on HDD or SSD.

45 Concurrent and Distributed Graph

To fully exploit the large number of threads available on
most modern machines, we provide a multi-threaded graph
(MTG) data structure within our framework. We take a
compositional approach for this. A MTG is composed of
an arbitrary number of nearly-independent subgraphs. This
approach allows us to maximize coarse grain parallelism.

However, we also enable each individual thread to access
any of the subgraphs and this may lead to unsafe concur-

rent access from multiple threads. The MTG data structure
provide atomicity for all of its methods and in the current
implementation only one thread can operate on a subgraph
at a given point of time. For example building an MTG
using multiple threads is efficiently done as each thread can
potentially add and access vertices from independent sub-
graphs thus leading to no conflicts. If the application leads
to situations where two threads access the same vertex or
edge then the access will be serialized using locking.

Similar to MTG we provide a distributed memory graph
(DISTG). A DISTG is thus composed of an arbitrary num-
ber of subgraphs, with one or more subgraphs on each ma-
chine. The runtime of our library provides remote procedure
call (RPC) as the main modality of accessing remote data or
performing certain computations on remote data and even-
tually returning results. The distributed memory graph is
currently work in progress that will be deployed in our li-
brary relatively soon.

4.6 Javainteroperability

Native Store supports Java clients through an in-process
JNI layer that maps the concepts and methods of the mul-
tiproperty C++ graph to Java static methods. This has
allowed the System G team to leverage existing open source
Java-based code bases to implement additional graph fea-
tures. As a result, System G users have the ability to ac-
cess their graphs through Groovy, Gremlin and SPARQL. In
most cases Java clients do not program to the JNI interface
but instead program to a TinkerPop Blueprints layer built
upon the JNI methods.

5. PROGRAMMING MODEL

In Section 4 we had an overview of the main interfaces
of the graph data structures available in System G Native
Store. In this section we present in more detail the program-
ming model exposed to the users.

5.1 Singlethread programming

The graph exposed by our library is a two dimensional
data structure consisting of a set of vertices and a set of
edges. We employ an adjacency list and the consequence
of this is that we don’t store the edges as a contiguous set
but each vertex stores its outgoing edges. Thus traversing
the whole structure of a graph is often a composition of two
nested loops: a first one over each vertex, and a nested one
over each edge of a vertex. This is exemplified in Figure
6. If the user requires some analysis over vertices and edges
of particular labels then the label needs to be provided as
argument to begin and end methods.

If the user performs a local query starting at a particular
vertex identified by its vertex descriptor, the code as shown
in Figure 2, lines 23-34, can be used.

5.2 Support for concurrent execution

Most parallel machines available today employ multicores
and System G Native Store library provides the necessary
support to exploit multiple threads. Native Store runtime
is the component of our framework that exposes to develop-
ers a task based model of computation isolating them from
notions like posix threads, cores, SMT, etc.

A parallel computation in Native Store consists of a set
of tasks with possible dependencies between them. The set
of tasks for a particular computation in general is decided

AW N e

o«

7

8

9
10
11
12
13
14
15
16
17
18

template <class G>
void process_graph (G& g){
vertex_iterator vit= g.vertices_begin ();
for (; vit !=g.vertices_end ();++ vit){
edge_iterator eit = vit—>edges_begin ();
for (;eit != vit—>edges_end();++eit){
//process edge identified by eit
// eit—>target (); eit—>property ();...
}
}
}

Figure 6: Native Store whole graph traversal

template <class Graph>

class addverts_wf public ibmppl::
virtual void execute(task_id){

¥

s

//Case 1 populate graph with vertices
addverts_wf<Graph> av(g);
ibmppl:: execute_tasks(&av,

work_function {

2 % num_threads);

//Case 2 : perform a computation on each vertex
ibmppl:: for_each (g, process_vertex);

//Case 3 : perform a computation for each wvertex of
// the task graph
ibmppl:: task_graph tg;

add vertices (tasks) and edges
ibmppl:: schedule_task_graph(tg);

Figure 7: Expressing parallelism in System G Native
Store

when the computation is started (static computation). How-
ever there are situations when tasks can be created dynam-
ically by other tasks. This situation is accommodated by
our framework with the only complication being the inter-
nal mechanism to track down the number of task created and
completed in order to let the user know when the computa-
tion is finished. Tasks created after the start of computation
are also managed by the runtime scheduler which employs
work stealing to balance the computations between threads.
For performance reasons work stealing is important for such
system where the amount of work per vertex is variable as
it often depends on how many successors, predecessors the
vertex has.

On top of the task based execution model we implemented
in System G Native Store a set of primitives to abstract the
parallelism from the user. In Figure 7, Lines 1-9, we show
a simple example on how users can specify a work function
which is the body of the task, and how it can schedule a
number of tasks that is a multiple of the number of cores on
the machine. The particular code in this figure can be used
for example to populate the graph with vertices and edges.
If the graph already has data, then the number of the tasks
created can vary from the number of cores to the number
of vertices in the graph depending on the granularity of the
computation per vertex. Using execute_tasks() we don’t
specify a partition of data per task and we leave that to the
user.

A second primitive we provide as part of our runtime is
the for_each(), shown in Figure 7, Line 11. In this case
the users is requesting the work function process_vertex
depicted in Figure 2 to be invoked on each vertex of the

Vertices Size Properties Load
Time(s)

Person 100,000 8 0.45
Post 54,784,723 7 188.8
Forum 3,676,271 3 10.6
Place 5,130 3 0.01
Tag 12,144 3 0.03
Edges

Person-knows-person 2,887,797 0 3.21
Person-likes-post 208,241,439 0 311
Post-hasCreator-person 54,784,723 0 54
Post-hasTag-tag 42,797,703 0 34
Forum-contains-post 54,784,723 0 52

(dependencies) to tg

Figure 8: Input dataset used for evaluation

graph. The framework underneath decides how to create
tasks to maximize the throughput of vertices processed per
second.

A last primitive supported by Native Store runtime is
schedule_task_graph() exemplified in Figure 7, Lines 14-
17. In this case the user provides as input a task graph
which is a directed acyclic graph. Each vertex represent a
task identified by its unique task identifier and its associated
work function. The edges represent dependencies that will
be enforced when processing tasks. The execution will first
set the number of incoming dependencies for each vertex
and it will start executing the vertices/tasks with no depen-
dencies. When a task is completed it decrements a count
on all its successor vertices (tasks). If other vertices have
their count to zero then they will be scheduled for execu-
tion. Work stealing in this case happens only across ready
to run tasks.

With the above support we anticipate users will be able to
exploit parallelism decoupled from lower level details about
the machine and thus allowing the runtime to perform the
mapping to the machine. The concepts we introduced in
this section are not new and they are currently employed
in other libraries like Intel TBB, STAPL[7], Galois[10]. The
novel part that we are focusing on in System G Native Store,
is to employ these patterns to generalize some of the ex-
isting programming models like Pregel [9], Giraph [2] that
target mainly fully parallel vertex centric computations dis-
regarding for example the fact that you may need to process
vertices in a particular order.

6. PERFORMANCE EVALUATION

We evaluate in this section the performance of our graph
library and runtime system using benchmarks that import a
large corpus of data into the graph datastructure and sub-
sequently performs a set of queries on the graph.

We use for our experimental evaluation a social network
dataset generated using the “Linked Data Benchmark Coun-
cil (LDBC)” graph generator. The dataset is generated apri-
ori and stored in CSV files on the disk. The vertices and
edges considered for the experiments in this section are de-
scribed in Figure 8.

6.1 Graph construction

We imported the input dataset as described in Figure 8
using an Intel Haswell server with two processors, each pro-
cessor 12 cores running at 2.7GHz and 256 GB of memory.
The input CSV files are stored on an SSD disk. The graph
is built using one thread, in memory only and is the multi-
property graph as described in Section 4.3. We include in

Figure 8 in the fourth column the time it took to read indi-
vidual input files and add corresponding vertices and edges
in memory. In addition to the corresponding add vertex and
edge methods the execution time includes reading from file,
parsing input, add related properties. It also includes the
execution time to add entries into an index from an external
vertex identifier specified in the input files to the internal
vertex identifier used by our graph library. In general the
ingestion time depends on the number of properties consid-
ered. For example when adding the post vertices we achieve
a rate of 290,000 vertices per second.

6.2 Graph queries

In this section we evaluate three different queries per-
formed on the dataset we considered. LDBC project pro-
vides a set of seven sample queries and in this work we eval-
uated query number two, four and six', denoted by Query 1,
2, and 3 in this paper, respectively. Query 1 finds the newest
20 posts among one person’ friends; Query 2 finds the top 10
most popular topics/tags (by the number of comments and
posts) that ones friends have been talking about in the last
z hours; and Query 3 finds 10 most popular tags by peo-
ple that are among your friends and friend-of-friends, which
appear in posts where tag x is also mentioned. The queries
are implemented exactly as specified on the LDBC site, re-
trieving all the required fields. Essentially, all queries are
localized searches through the graph datastructure starting
from a particular vertex and subject to various filtering con-
ditions. One can notice the importance of having labels for
edges and more importantly having an efficient storage that
will allow traversals of only edges and vertices of a particular
label.

In Figure 9 we illustrate the distribution of 1000 query
(Query 1) times where the starting vertex was randomly
chosen. The bars depict how many queries had the average
execution time shown on X axis, while the line and the right
Y axis show the average number of edges traversed per query
for a particular bucket. From the figure we notice first that
for this types of graphs most queries have a relatively low
number of edges traversed (1000 for the first bar). However
for a small number of queries the number of edges traversed
is close to 70k. Secondly, as expected the execution time in-
creases with the number of edges traversed by query but for
all queries considered the time was under 25 microseconds.
The throughput of the queries is shown in Figure 10, where
the metric on the y-axis is the number of traversed edges
per second (TEPS). The figure clearly shows that System G
Native Store scales well for various number of threads and
all the queries, and the throughput is excellent, reaching 160
million edges per second.

7. CONCLUSION AND FUTURE WORK

This paper presents a high performance graph library in
IBM System G Native Store, a whole spectrum solution for
graph processing. This runtime library is not only easy to
use due to its intuitive APIs, but is also highly efficient for
various graph analytics. It preserves graph data locality and
supports multiproperty graphs, persistent graphs, concur-
rent and distributed graphs. Preliminary experiments show
highly efficient graph processing performance using a social
network dataset with 500 million edges.

"https://github.com/ldbc/ldbc_socialnet_bm_neodj/wiki/Queries

250 80000
70000
60000

W #Queries

200 +#Edges/Query

150 5000 .

g wom 3
§ 100 I
o =}
£ 50 20000 =
10000 *

0 I IIIIIIIIII.II..III.I---Q
o P =) ® A © o >

& S & N N X P

o Qéh & F P S P

Time [sec]

Figure 9: Distribution of Query 1 Times

1.60E+08

1.20E+08

o
o
i
S B.00E+07 = Query-1
2 = Query-2
3 Query-3
2 400E+07
=

0.00E+00

0 5 10 15 20 25 30 35
Number of Threads

Figure 10: Throughput of Graph Queries

8. REFERENCES

[1] SPARQL. http://wuw.w3.org/TR/rdf-sparql-query.

[2] Apache giraph. https://giraph.apache.org/, 2014.

[3] Tinkerpop. http://www.tinkerpop.com/, 2014.

[4] Titan distributed graph database.
http://thinkaurelius.github.io/titan/, 2014.

[5] M. Canim and Y. Chang. System G data store: Big,
rich graph data analytics in the cloud. In IEEE
International Conference on Cloud Engineering, 2013.

[6] D. Gregor and A. Lumsdaine. The parallel bgl: A
generic library for distributed graph computations. In
In Parallel Object-Oriented Scientific Computing,
2005.

[7] Harshvardhan, A. Fidel, N. Amato, and
L. Rauchwerger. The stapl parallel graph library. In
Languages and Compilers for Parallel Computing,
2013.

[8] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,

C. Guestrin, and J. M. Hellerstein. Graphlab: A new
framework for parallel machine learning. arXiv
preprint arXiv:1006.4990, 2010.

[9] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In SIGMOD,
pages 135-146. ACM, 2010.

[10] K. Pingali. High-speed graph analytics with the galois
system. In Proceedings of the First Workshop on
Parallel Programming for Analytics Applications,
PPAA 14, pages 41-42, 2014.

[11] 1. Robinson, J. Webber, and E. Eifrem. Graph
Databases. O’Reilly Media, Incorporated, 2013.

[12] J. Siek, A. Lumsdaine, and L.-Q. Lee. Boost graph
library,
http://www.boost.org/libs/graph/doc/index.html.
2001.

