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Abstract—Conflict detection and resolution are among the
most fundamental issues in transactional memory systems.
Hardware transactional memory (HTM) systems such as
AMD’s Advanced Synchronization Facility (ASF) employ in-
herent cache coherence protocol messages to perform conflict
detection among transactions. Such an implementation has the
advantage of design simplicity, nonetheless, it also generates
false transactional conflicts due to false sharing within cache
lines, unnecessarily reducing the overall performance.

In this work, we first investigated the behavior of false
transactional conflicts under the AMD’s ASF system. It is found
that false conflicts showed rather stable pattern within each
cache line that subsequently inspired our false transactional
conflict reduction technique using our proposed speculative
sub-blocking state. By adding an extra speculative state for
each cache line’s sub-block, we can maintain conflict detection
at the granularity of sub-blocks while keeping the original
cache coherence protocol intact. The overall design is simple
and highly implementable for achieving a high-efficiency HTM
system with minimum impact in hardware.

We evaluated our proposed technique using PTLsim-ASF
and compared it with a baseline ASF HTM system and an ideal
system with no false transactional conflict. Our results showed
that the proposed lightweight technique can avoid false conflicts
effectively and efficiently. With four sub-blocks in a cache line,
our technique can eliminate 56.4% false transactional conflicts
and 31.3% of all transactional conflicts on average, which
approaches the performance of an ideal system.

Keywords-transactional memory; false conflict; parallel pro-
gramming; microarchitecture;

I. INTRODUCTION

In the era of multi-core computing, scalability is be-

coming the major concern of machine learning and data

mining applications. In order to scale the performance of

algorithms, parallel programming models as well as their

required hardware support have received more and more

attention. The goal is to provide a holistic solution to

improve programmability, productivity, performance, and

power. Toward this end, Transactional Memory (TM) [1],

proposed as a replacement technique for traditional lock

programming, provides much promise to meet the demand

for future multi-core programming. TM allows programmers

to write atomic code easily without concerning how the

atomicity is achieved and maintained. Besides the ease of

programmability, it also provides performance benefits from

potentially concurrent execution of parallel transactions.

Numerous TM-based systems have been proposed and

implemented. A TM system can be achieved in software

transactional memory (STM) [2], hardware transactional

memory (HTM) [3], [4], [5], or a hybrid system [6]. A slew

of these research works particularly focused on implemen-

tation issues such as memory versioning, conflict detection,

and isolation property. Moreover, microprocessor industry

has also caught up and started to develop and provide

TM support. For example, Sun/Oracle’s Rock processor

leveraged the common speculative hardware features shared

by HTM and runahead execution to enable both execution

models [7]. IBM announced TM support in their upcoming

BlueGene/Q processor for the Sequoia supercomputer [8].

Intel also disclosed the ISA details of their version of

TM support called TSX to appear in their next-generation

microarchitecture code-named Haswell [9]. Among these

endeavor, AMD, one of the earliest HTM proponents, in-

troduced Advanced Synchronization Facility (ASF) [10] to

support HTM on top of the x86 ISA. Instead of supporting

complicated optimization methods, such as unbounded trans-

actions [3] and active transactional scheduling [11], [12],

AMD’s proposal attempted a best-effort system that keeps

hardware simplicity and minimum impact on whole system.

In an ASF-enabled HTM system, conflicts are detected

by incoming cache coherence messages and the speculative

state information is added onto each cache line. Due to the

coarse granularity data management, false sharing between

different cores will be present when different cores attempt

to access non-overlapped data bytes within the same cache

line. This is the same performance problem causing ping-

pong effect and studied in prior shared-memory multipro-

cessor systems [13]. Worse yet, in an HTM system, the

same issue will lead to false conflicts among transactions

and cause unnecessary transaction aborts. In other words,

useful works are disrupted and discarded, wasting power

and degrading the overall performance of an HTM system.

Our experimental results of STAMP [14] and RMS-TM [15]

benchmark suites showed that as much as 46.7% of all

transactional conflicts could be attributed to false conflicts.
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Although conflict detection is a rather basic issue in an HTM

system, ignoring this harmful behavior could substantially

reduce the effectiveness of a TM system. This cost will be

too expensive in exchange of the benefit of its programma-

bility. Therefore, it deserves reconsideration for our current

TM hardware design to minimize its destructive effect on

performance.

False conflicts, in general, largely depend on applications’

characteristics, such as sharing pattern, access pattern, and

data allocation. The uncertainty of applications make them

hard to mitigate. Typical solutions for false sharing issue

in shared-memory system are less feasible when it comes

to HTM systems. And previously proposed HTM specified

false conflict reduction techniques [5], [16], [17] also have

their shortcomings, making them infeasible for AMD’s ASF-

like HTM system. We will further elaborate them later.

To address the shortcomings of the prior work, our goal

is to develop a technique that can efficiently reduce false

conflicts with minimum impact on the original architecture

design. In this paper, we propose a transactional false

conflict reduction mechanism based on speculated sub-

blocking state. Our technique maintains speculated states at

the granularity of cache sub-block while keeping the original

coherence protocol intact. The technique is lightweight,

and highly implementable on top of an existing system

supporting ASF-like hardware transactional memory. Using

our technique, the false conflict rate can be substantially

reduced while the design complexity and impact on general

system are both kept in minimum. To evaluate our pro-

posed technique, we ported STAMP [14] and RMS-TM [15]

benchmark suites using AMD’s ASF instruction extension,

and performed performance evaluation using PTLsim-ASF

simulator provided by AMD [18]. Our results show that

with four sub-blocks in a cache line, our technique can

reduce 56.4% false transactional conflicts and 31.3% of

all transactional conflicts on average, which approaches the

performance of ideal situation without any false conflict. The

main contributions of this paper are:

• We ported STAMP [14] and RMS-TM [15] benchmark

suites and analyzed the behavior and performance impact

of false transactional conflicts in a commercial HTM sys-

tem based on AMD’s Advanced Synchronization Facility

(ASF).

• We proposed a lightweight, highly implementable hard-

ware solution that enables the maintenance of conflict

detection at a finer granularity, e.g., at the cache sub-

block level.

• We evaluated the effectiveness of our hardware technique

in resolving transactional false conflicts for an ASF-like

TM system using our ASF-enabled TM benchmark suites

on PTLsim-ASF simulator.

The rest of the paper is organized as follows. Section II

discusses the background, related work and shortcomings

of past works. As a motivation of this paper, false conflict

behavior is analyzed in Section III. The implementation

details are explained in Section IV. Section V evaluates

our technique by comparing it to the baseline ASF system

and a perfect system without false conflicts. Section VI

summarizes the main conclusions of our work.

II. BACKGROUND AND RELATED WORK

In HTM systems, transactional conflicts are always the

most prominent problem affecting the overall execution

performance. Some HTM systems, such as LogTM [5],

proposed to detect conflicts with memory address signature

and special cache coherence messages, while others, such as

AMD’s ASF [10] an HTM support to be commercially avail-

able for x86 architecture, was designed to infer transactional

conflicts from an unmodified cache coherence protocol,

which can lead to false transactional conflicts due to false

sharing at the granularity of cache lines.

False sharing, a common performance issue in program-

ming shared memory multiprocessor systems, was studied

in prior works [13]. It can cause unnecessary bus traffic and

even ping-pong effect, degrading the overall performance.

Common solutions to addressing the false sharing problem

include data structure re-grouping and maintaining coher-

ence at a finer granularity using sub-blocks. Unfortunately,

these prior proposals are less feasible in HTM systems

because of the different features and requirements of HTM

environment.

A software reconstruction technique requires specially

tailored modification on code and data according to cache

line size. It can be done either by programmers or by

smart compilers and could be efficient if applied properly.

If it is done by programmers, it would be quite impractical

because it contradicts the most essential goals of using a

TM system, i.e., ease of programmability and programming

productivity. TM systems were conceived to offer parallel

code programmers a good high level abstraction in order

to make parallel programming easy and efficient. It would

surely be improper to require programmers to write low-

level code to avoid false conflicts. On the other hand, if

relying on smart compilers to accomplish the reconstruction

work, those special tailored code and data structure will only

take effect in specific hardware, which makes software not

portable.

As for the hardware technique, it obviously can reduce

false conflicts with its smaller cache coherence granularity.

But it also requires special modification to the original cache

coherence protocol. Such modification may bring unknown

impact on the processor’s general performance. An HTM

system like ASF implemented in modern out-of-order core

can be very complex for general purpose high-performance

computation. The critical structures such as cache coherence

protocol are better left intact rather than vastly modified by

new ideas for specific architectural feature.
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The false conflict issues in HTM systems were observed

previously in [5], [16], [17]. Porter et. al [16] discussed the

impact of different coherence granularities on false sharing

in their speculative multi-threading (SpMT) environment.

They also proposed a speculation-based method to eliminate

false sharing by speculating the presence of true conflicts

and trying to validate them later. Tabba et. al [17] proposed

an HTM system called DPTM. They implemented the co-

herence decoupling technique proposed by Huh et. al [19]

to reduce false conflicts.

Their methods share significant similarity in false sharing

reduction issue. In their methods, whenever a cache line

containing read data is invalidated, they always speculate

that there is no true conflict and continue their execution

without abortion. In the SpMT’s solution, it marks the

speculated cache lines as unsafe and check the validity by

data comparison when they are accessed again, invalidated,

and committed. In DPTM, it only validated at commit time

without the marking mechanism.

SpMT does analysis and evaluation work in speculative

multi-threading environment; the impact of false conflicts

on pure HTM systems is still unknown. DPTM’s technique

brings benefit from false conflict reduction besides their

general performance gain from Huh’s original idea of value

prediction [19]. Both of their techniques share similar draw-

backs. First, they can only handle false conflicts caused by

write-after-read cache lines. From the simulation results in

Figure 2, we can see that read-after-write false conflicts also

have quite significant portion. Ignoring this type of false

conflicts will miss out great opportunities for performance

optimization. Secondly, their techniques impose lazy conflict

detection constraint on HTM systems, even if the original

ones employ an eager conflict detection policy for certain

considerations. It may break the original system’s design

philosophy and result in performance loss in some HTM

systems.

III. MOTIVATION

A. False conflict behavior

In this section, we analyze the characteristics of false con-

flicts in an ASF-enabled HTM system to motivate our work.

We first ported STAMP [14] and RMS-TM [15] benchmark

suites using AMD’s ASF instruction extension [10]. We

then simulated these TM benchmark suites using PTLsim-

ASF [18] which was further modified to facilitate our

characterization and analysis work.

First of all, we analyzed how serious false conflicts are in

our target ASF-enabled HTM system and tried to understand

the requirement of its solution space. Figure 1 shows the

false conflict rate of STAMP and RMS-TM benchmark pro-

Figure 1: False conflict rate of STAMP and RMS-TM

benchmark suites

grams in AMD’s ASF HTM system. 1 As shown in Table III,

the benchmark suites we chose include several representative

machine learning and data mining applications. From the

result in Figure 1, we found that sometimes the false conflict

rates cannot be easily disregarded. Most of the benchmark

programs we experimented show a false conflict rate more

than 40% while the rate can go as high as more than 90%

in graph computing kernel ssca2 and mining application

Apriori. The false conflict rates of other applications also

show significant high number, such as the mining program

utilitymine and learning application kmeans. On average,

the false conflict rate is around 46%. Although conflict de-

tection among transactions is considered a basic issue, prior

studies focused much more on the efficient implementation

of conflict detection mechanism but paid less attention in its

performance implication. As shown in our experiments, to

make transactions more effective and waste less processing

power in an ASF-like HTM system, we should also consider,

in our HTM design, the resolution of minimizing the false

conflict rate among transactions.

As mentioned in the previous section, researchers have

proposed methods to eliminate false conflicts caused by

cache lines written after being read. The efficiency of their

methods first rely on the fact that most false conflicts are

from write-after-read (WAR) type. But our analysis shows

a different observation. As shown in Figure 2, for certain

benchmark programs, such as vacation and Apriori, write-

after-read (WAR) false conflicts are indeed the dominant

type, which makes it reasonable to ignore other types’ false

conflicts. Nevertheless, for other benchmark programs, e.g.,

kmeans, labyrinth, and genome, false conflicts due to

1We choose not to present bayes benchmark because of its non-
deterministic finishing conditions. We also exclude yada and hmm bench-
marks because their transactions are extremely large and cannot fit into
baseline ASF hardware.
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Figure 2: Breakdown of different false conflict types

read-after-write (RAW) ( 73% on average) are the primary

conflict type. From this analysis, it is noteworthy that

both WAR and RAW are important in resulting in false

transactional conflicts and aborts. Hence, the solution for

avoiding them should be general enough and can be applied

to both types of false conflicts.

In reality, false transactional conflicts greatly depend on

several factors including sharing pattern, access pattern,

physical data allocation, and transaction ordering and timing

for a running application. The dynamic nature of applica-

tions and its concurrent execution model makes it even more

difficult to summarize general behavior; therefore, making it

hard to mitigate false conflicts without runtime information.

Our analysis results also support such intuition.

Figure 3 shows the time distribution of false transactional

conflicts over the execution. We picked four representative

benchmark programs, vacation, genome, kmeans and

intruder from the STAMP benchmark suite and showed

the cumulative number of false conflicts and launched

transactions over time. The programs we picked are travel

reservation, gene sequencing, kmeans clustering and net-

work intrusion applications which well covered different

application types. From the results, we can see that they all

have similar close to linear distribution for the started trans-

action number over time. But for false conflicts, there are

distinctive behaviors among different benchmark programs.

Even within the same execution of one program, there are

different phase behaviors demonstrated. For example, in the

machine learning application kmeans, the number of false

transactional conflicts grows quite linearly with the same

trend of started transaction number. vacation also has a

similar growth feature as its started transaction number. In

contrast, in the gene sequencing application genome, the

number of false conflicts grow more rapidly in two particular

periods than the others, while the number of its started

transactions is growing linearly during most of the time.

Figure 4 shows the physical address space distribution

of false conflicts. We picked the same four benchmark

programs as former paragraph and showed the false con-

flict number by physical cache line index. As shown, the

results also show distinctive behaviors among benchmarks.

In vacation and intruder, false conflicts have quite uniform

distribution in most cache lines except few peak points.

On the contrary, kmeans shows an interestingly different

pattern. Here, false conflicts are mostly from a few specific

cache lines. It is in accordance with the data layout of

kmeans. In kmeans, most conflicts are caused by few

globally shared data elements. Like time distribution of false

conflicts, we can see that their address space distribution also

hardly show any general spatial locality feature in L1 cache.

There is no general trend in either time or space domain for

false conflicts.

The results in Figure 3 and Figure 4 may have shed some

light on potential possibilities to solve this problem from

a programmer’s viewpoint. However, from the perspective

of hardware support, it is difficult to draw a common,

predictable trait for false conflicts at the system level of an

HTM. Given the dynamics and uncertainty due to programs’

arbitrary access/execution pattern, it would be even more

difficult to realize a simple, elegant solution to solve false

conflict problem completely.

B. Access pattern of false conflicts inside a cache line

False conflicts are caused by the accesses of different,

non-overlapped locations in the same cache line. Although

their general behavior has some dynamics, the access pattern

inside one cache line shows stable characteristic. Figure 5

shows the number of accesses of each location in one cache

line. We picked the same four representative benchmarks

for analysis. From the result shown here, we can see that

accesses are distributed across a cache line at the granularity

of 8 bytes in vacation, genome, intruder and 4 bytes in

kmeans. This is corresponding to the four benchmarks’ data

structure size. In kmeans, 32 bits data granularity is used

while others choose coarser data structure.

Although between benchmarks they still have differences

on their exact access distribution inside a cache line, they

all share a regularly scattered distribution pattern. This result

indicates a great potential of reducing false conflicts with a

lightweight sub-blocking technique.

In order to further demonstrate that, we also analyze the

reduction rate of sub-blocking technique. Figure 8 shows

the percentage of reduced false conflicts with different sub-

blocks of one cache line. For the benchmarks discussed

above, with 4 sub-blocks, the reduction rate can be even al-

most 100% in vacation and relatively good in others. While

with 8 sub-blocks, all of the false conflicts are eliminated

except for kmeans due to its finer data granularity. Even

in kmeans, the false conflicts can be reduced significantly

with only 4 sub-blocks as shown later in Figure 8. We can
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Figure 3: Cumulative number of false conflicts over execution

Figure 4: False conflict number by cache line index

Figure 5: Number of accesses by location inside cache lines

see that a lightweight sub-blocking technique is efficient

enough for most programs. Meanwhile its simplicity also

well follows the same design philosophy of ASF, that is

keeping the impact on existing system minimum.

This is the basic idea of our simple but very efficient and

implementable technique for ASF-enabled TM systems. The

implementation details will be discussed in the following

section.

IV. IMPLEMENTATION

This section demonstrates how to apply sub-blocking to

the hardware design to mitigate the negative effect of false

conflicts.

A. Baseline system

First, for this study, we use the AMD’s Advanced Syn-

chronization Facility (ASF), an HTM extension for AMD64

processor, as our baseline system [10]. ASF uses the L1

data cache and load/store queue to buffer speculative data

sets for lazy data versioning. To support that, each L1 data

cache line was extended with two extra bits: an SW bit

for speculative read and an SR bit for speculative write.

ASF uses MOESI cache coherence protocol. Transactional

conflicts are detected by checking the SW/SR bits against

the incoming cache coherence protocol messages. An in-

validation request message will conflict with both the SW

and SR bits, while a non-invalidation request message will

only conflict with the SW bit. If a conflict is detected, the

earlier conflicting transaction will be aborted by discarding

all the speculatively modified data and resetting the bits. If a

transaction commits without conflicts, the buffered speculate

data will be committed by gang-clearing the bits.

As one of the earliest HTM systems in modern multi-core

processors from industry, ASF is a practical design. Given it

was established on top of the x86 architecture, it represents

the potential future trend.

B. Basic hardware mechanism

We propose to implement our lightweight technique as an

extension to the baseline ASF system. Instead of checking

conflicts at the granularity of a cache line, we divide the data

portion of a cache line into sub-blocks. Two extra state bits

are added for each sub-block: SPEC for speculative access

and WR for access type as shown in Table I. Speculative

accesses inside transactions will set these two bits of the

corresponding sub-block according to their access types. As

shown in Table I, the corresponding sub-block has never

been speculatively accessed if both of these two bits are

set to 0. Similarly, it has been speculatively written or

read if the SPEC bit is 1. The dirty state is set through

the returned coherence protocol message when current sub-

block is speculatively written by other cores but has not
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Table I: Sub-block state

SPEC WR State

0 0 Non-speculate

0 1 Dirty

1 0 Speculative Read (S-RD)

1 1 Speculative Write (S-WR)

caused any true conflict yet. It is used to detect potential

conflicts and will be further discussed in the following

section. Conflict detection will check the incoming messages

against the corresponding sub-block’s state bits. Thus, false

conflicts of different sub-blocks can be completely avoided.

To achieve this goal, we also need to check conflicts with

both valid and invalidated cache lines for detecting conflicts

of cache lines invalidated by false WAR conflicts. Besides,

piggy-back bits will be added to the original coherence

messages for handling dirty states.

C. Handling dirty state

Enabling sub-blocking for HTM requires careful handling

of all possible states. The dirty state problem shown in

Figure 6 can cause correctness issue and hence needs proper

handling. As shown in Figure 6(a), a transaction T1 reads

cache line B which is in T0’s L1 cache. This cache line has

been written by T0 earlier in a different sub-block. Since

there is no true conflict, both transactions will continue. A

subsequent T1 attempts to read A and produces a RAW

conflict with T0. However, T0 will not get any coherence

message because T1 hits its own cache. Both transactions

will be allowed to commit which breaks the atomicity

requirement of TM. Similarly in Figure 6(b), T1 will get

an incorrect value from its subsequent read, if T0 aborts

first.

In order to handle the problem shown above, we introduce

the dirty state to each sub-block. If one sub-block is written

by some other transaction but has not caused any true

conflict, the speculate bits will be set to dirty state. It

indicates that current sub-block is not reliable for further

accesses. When the dirty sub-block is hit in subsequent

memory accesses, it will be treated as a local L1 cache miss

since the data may be incorrect. The current core will send

out a non-invalidating coherence message to all other cores

to request for the cache line. If the conflicting transaction is

still ongoing, it will be aborted by this message. Otherwise,

if the conflicting transaction has been aborted earlier, the

cache line request will finally be fulfilled by the deeper levels

of the memory hierarchy.

D. Detailed mechanism

1) Load access: When a transaction attempts to read a

data item that is not in any core’s L1 data cache, it proceeds,

as in the ASF baseline, by issuing a cache miss request and

setting the corresponding sub-block’s bits (SPEC=1, WR=0
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Figure 6: Problems with dirty state
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Figure 7: A detailed example of load access

shown in Table I) of the accessed data part after the line is

loaded into the L1 cache.

On the other hand, if the data is in some other core’s L1

cache, as shown in Figure 7, the requesting core will send

out a non-invalidation message to all other cores as done

by a typical cache coherence protocol. For the remote core

that possesses the requested data, it will check the incoming

message against the state bits of its corresponding sub-block.

If there is no true conflict, it will return the data together

with the special status bits indicating speculative written sub-

blocks of this cache line. After receiving the return message,

the requesting core will check against the piggy-back status

information to see if any sub-block has been speculatively

written by the remote transaction. If so, the corresponding

sub-blocks will be marked as dirty (SPEC=0, WR=1 shown

in Table I).

When a transactional load hits the local L1 cache, it will
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check against the state bits of its sub-block to see if it is a

dirty sub-block. If so, this load will be treated as a local L1

cache miss because it could miss true conflict or get incorrect

data as discussed in the prior section. The local core would

then send out a non-invalidating message to other cores

for data requesting as done by a typical cache coherence

protocol. If the remote transaction is still ongoing, it will be

aborted by this coherence message. Otherwise, correct data

will be fetched from either other cores’ L1 cache or from

the lower level memory. After this cache coherence message

is returned, the requesting core clears the dirty state of this

sub-block by setting the SPEC bit to 1 and the WR bit to 0.

2) Store access: When a transaction issues a speculative

store, it sends out an invalidation message as done by a cache

coherence protocol. The remote cores will then check the

message against their corresponding sub-block’s state bits

for conflict detection. If there is a conflict, the transactions

in the remote cores will be aborted based on the conflict

resolution policy of the ASF-enabled system.

If the cache line has been speculative read by the remote

core and there is no true conflict, the remote core can

continue its transaction but the cache line with speculative

information will be invalidated. In order to avoid miss

conflict detection of cache lines invalidated by false WAR

conflicts, all the speculative information will still stay inside

the invalidated cache line. The later conflict detection will be

decoupled with general cache coherence states. The conflict

check will be done for both valid and invalidated cache lines.

If there is no true conflict but the cache line has been

speculative written earlier by the remote core, the remote

core also needs to abort its running transaction to avoid

speculatively updated data getting lost in the invalidation

process. As shown in Figure 2, false conflicts caused by

write-after-write accesses consist nearly 0% in total. Thus,

ignoring false conflicts due to write-after-write type will not

lead to any considerable performance loss.

3) Commit and abort: During the period of commit or

abort, the procedure is exactly the same as the baseline ASF

system. The only difference is that a clear action needs to

clear more bits than just two. The dirty state bits in other

cores caused by the current transaction do not need special

reset. When remote transactions commit, abort or hit the

corresponding sub-blocks with dirty state, these dirty state

bits will be cleared naturally. In order to keep the commit

procedure as simple as the baseline, we leave the dirty state

bits of remote cores untouched at the commit time.

E. Overhead of Proposed Implementation

The performance overhead of our method compared to

the baseline ASF comes from two parts. The first part is

the extra state bits check and clear. It can be minimized

by proper hardware design. The second part is the slightly

larger coherence messages. A few piggy-back bits will be

added to the original coherence messages for transactional

loads. Returning messages of a load request may need to

send special status bits together with the data. This could

consume extra time due to the larger data size. For a typical

configuration of four sub-blocks, the extra number of status

bits is four. Compared to the 64-byte cache line size, the

extra data transmission time will be almost negligible. More-

over, it only happens when a load request hits other cores’

written cache line. Such situation was originally considered

as a conflict and could trigger abort in the baseline ASF

system. Thus, the overhead of performance is considerably

small and can be ignored comparing to the performance gain

of our technique.

The hardware overhead mainly comes from the extra state

bits for each sub-block inside each data cache line. For N

sub-blocks, the extra bits can be 2N bits in each cache line.

Compared to baseline ASF’s design, the overhead is 2(N-

1) bits per cache line. For a typical cache configuration, an

ASF system has a 64KB L1 cache with a cache line size of

64 bytes. If sub-dividing the cache line into four sub-blocks,

the hardware overhead compared to the baseline ASF will

be 0.75KB, accounting for 1.17% of the original L1 cache

size.

V. EVALUATION

A. Simulation Methodology

To evaluate the effectiveness of our technique, we use

PTLsim [18]. It supports full system simulation and fea-

tures a detailed timing model of an out-of-order processor

core. AMD provides extension to the baseline PTLsim

to support their ASF mechanism [18]. The simulator was

configured to match the generic configuration of AMD

Opteron processors, with a three-wide clustered core, out-of-

order issuing, and instruction latencies modeled after AMD

Opteron microprocessor. The detailed configuration is shown

in Table II. We use the original ASF design as the baseline

system for comparison with our proposed speculative sub-

blocking state technique. We also modelled a perfect system

with no false conflict to demonstrate the effectiveness of our

scheme. Although our method does not have any special

restriction on the number of sub-blocks within a cache line,

we chose four sub-blocks as the configuration parameter for

all the performance evaluation. It is based on the results of

our sensitivity study, which will be discussed in following

section.

The STAMP [14] and RMS-TM [15] benchmark suites

were used for our evaluation. We used the standard con-

figuration for both of them. In our simulation, we excluded

bayes due much to its non-deterministic finishing conditions

and also yada and hmm for their extremely large transac-

tions. The details of the remaining benchmarks are shown

in Table III. They include machine learning algorithms

like kmeans and scalparc, data mining applications like

apriori and utilitymine, graph computing like ssca2 and

other parallel applications. Instead of using the TM compiler
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Table II: Simulation configuration

Feature Description

Processors
8 AMD Opteron 2.2GHz

Out-of-Order cores

L1 DCache

64KB, 64B cache line size, virtually
indexed, 2-way set associative,

3 cycles load-to-use latency

Private L2 cache
512KB, physically indexed, 16-way set

associative, 15 cycles load-to-use latency

Private L3 cache
2MB, physically indexed, 16-way set

associative, 50 cycles load-to-use latency

Main memory 2048MB, 210 cycles load-to-use latency

D-TLB
48 L1 entries, fully associative,

512 L2 entries, 4-way set associative

Table III: Benchmark description

Benchmark Description

intruder network intrusion detection

kmeans K-means clustering

labyrinth maze routing

ssca2 graph kernels

vacation client/server travel reservation system

genome gene sequencing

scalparc decision tree classification

apriori association rule mining

fluidanimate fluid simulation

utilitymine association rule mining

provided in [18], we chose to rely on normal gcc compiler

and put all TM-related ASF instructions in the library. This

enabled us to avoid impact from potential unknown TM

compiler optimizations and focus on our work. In order to

avoid live locks, we also introduced a simple exponential

backoff manager in the software library, which exponentially

increases the backoff time according to transaction retry

times.

B. Experimental Results

We present our simulation results in this section. First,

we evaluate the effect of different configurations of our

technique. In our mechanism, the number of sub-block to be

used in a cache line is the most important parameter. With

smaller sub-blocks, e.g., finer-grained sub-blocks, we can

reduce more false conflicts. Nonetheless, it also introduces

more hardware overhead for more status bits to be added

for keeping the speculative sub-blocking state. To choose

a proper size of a sub-block, we need to make trade-off

between the hardware overhead and the likelihood of false

conflict reduction. To study the effect of the size of sub-

blocks, we compared their respective false conflict reduction

rate as shown in Figure 8.

As shown, for all benchmark programs, sub-block 16 (i.e.,

16 sub-blocks, each 4-byte large, in a 64-byte cache line)

can completely eliminate all the false conflicts. Sub-block

8 also shows close to 100% reduction of false conflicts

in most of the benchmark programs except for kmeans,

which still consist of false sharing within an 8-byte sub-

Figure 8: False conflict reduction rate of different configu-

rations

block. When we further enlarge the size of the sub-block,

four sub-blocks shows close to the perfect reduction rate in

vacation, ScalParc and Apriori, and a relatively good false

conflict reduction rate for others. Thus, the reasonable sub-

block number should be chosen between 4 sub-blocks and

8 sub-blocks according to specific design considerations. At

the end, we chose four sub-blocks (i.e., 16-byte sub-blocks

in L1 data cache) for our evaluation to strike the balance

between hardware overhead and performance improvement

potential. As we will show in Figure 9, although eight

sub-blocks improve the false conflict reduction rate on

several benchmark applications, four sub-blocks show close

to perfect overall performance and is good enough for the

overall conflict and execution time improvement.

Hence, we presented the results based on four sub-blocks

in a cache line and compared its performance with two

systems: the baseline ASF-enabled system and a perfect

system with zero false conflict serving as the performance

upper bound.

From the results in Figure 8, we can see that with four

sub-blocks, our method does well on average. The reduction

rate is very high, close to 100%, for vacation, ScalParc and

Apriori. This indicates that the use of a 16-byte sub-blocking

strategy is sufficient to differentiate true data sharing and

false data sharing. However, some benchmark program, e.g.,

UtilityMine also shows a very low reduction rate. We found

that it is primarily due to the special characteristics of this

benchmark program. In its transactions, several very fine-

grained data structures were used. Thus, false sharing is

still present among these much fine-grained data structures

with our experimented sub-block with the granularity of 16-

byte. In the sensitivity study result presented earlier, we can

see that with smaller sub-blocks, the reduction rate of this

benchmark can be dramatically improved.

Figure 9 shows the impact of our method on the number
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Figure 9: Percentage of overall conflict reduction

of the overall conflicts including both true data conflicts and

false conflicts. The perfect system here is the ASF system,

which was configured to eliminate all the false conflicts to

be used as an ideal scenario. It represents the upper bound

of all false conflict optimization methods. Compared to the

perfect system, our technique shows that on average we

can achieve around 83% of perfect system’s reduction rate

with several benchmark programs approaching the perfect

cases. On the other hand, we also observed that there are a

few outliers such as intruder, UtilityMine, and labyrinth.

Benchmark intruder has the lowest false conflict rate as

shown in Figure 1, which makes the impact of our technique

on overall conflicts relatively low. For UtilityMine, it is due

to its low false conflict reduction rate. For labyrinth, it

is because of the variance of simulation results. Most of

labyrinth’s aborts came from the user’s aborts. The absolute

number of its conflicts is sometimes even lower than 20,

which makes the percentage result have a large variance.

In general, our lightweight technique can eliminate a large

portion of false conflicts caused by false sharing, leaving

only true data access conflicts like a perfect system in several

benchmark programs we evaluated.

Figure 10 shows the performance analysis of our tech-

nique. We evaluated the improvement on execution time over

the baseline ASF system. We also showed the performance

improvement of the perfect system as a performance upper

bound.

The results show that our technique has positive impact on

almost all benchmark programs except UtitlityMine, which

has minor slowdown of 0.1%. This can be considered as

a kind of simulation variance because of its very low false

conflict reduction rate and extremely low contention rate. For

benchmarks with long non-transactional execution time, the

improvement is relatively small. In this result, benchmark

intruder shows significant improvement of execution time

while its reduction rate of overall conflicts is quite low. This

Figure 10: Improvement of overall execution time

is because it has very high average retry times, which makes

the performance gain from eliminating conflicts much more

pronounced. Similarly, benchmark vacation also received

large improvement on the execution time for the same

reason. Generally, for benchmark programs with good per-

formance potential shown in a perfect system (e.g., intruder,

vacation and Apriori), our technique demonstrates signif-

icant improvement as high as 30%. For other benchmarks

with long non-transactional execution time, the improvement

will be less significant. But our technique also shows im-

provement approaching the theoretical upper bounds in most

of the cases.

Overall, our simple, lightweight technique can effectively

enhance an HTM system to recover the performance degra-

dation caused by false transactional conflicts while the

implementation cost is low and highly feasible.

VI. CONCLUSION

Transactional conflicts represent one of the most criti-

cal issues in achieving high performance for a hardware

transactional memory (HTM) system. Transaction aborts

due to conflicts not only lose useful work but also waste

power. Given HTM support were announced by several

key microprocessor vendors, to minimize the performance

impact of transactional conflicts become imperative to attract

more programmers to adopt this lock-free programming

model.

To detect transactional conflicts in an HTM system, it

is within the best interests of architects to leverage and

reuse existing hardware to minimize the design changes. For

example, in the AMD’s ASF HTM system, conflict detection

is done by using the inherent cache coherence protocol

messages. Such mechanism simplifies the hardware changes

for supporting HTM but also leads to false transactional

conflict problems due to the fact that communication is

performed at the granularity of cache lines.
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In this paper, we analyzed the behavior of false trans-

actional conflicts using AMD’s ASF HTM system as a

case study. We ported two benchmark suites using the

ASF instruction extension and performed analytical study

to understand their impact and explore viable solutions. In

our results, false conflicts comprise a significant portion

of the overall conflicts and show unpredictable patterns on

time distribution and cache space distribution. However,

within each cache line, their access patterns are quite stable.

Base on our analytical results, we proposed a false con-

flict reduction technique by keeping the speculative state

at the sub-block level. It maintains conflict detection at

the granularity of sub-blocks while keeping the original

cache coherence protocol intact. Our solution is low cost

and easy to implement on top of an HTM system without

much modification. Our evaluation results showed that the

proposed technique can effectively reduce a major portion

of the false transactional conflicts to approaching a perfect

system. The performance improvement can reach up to 30%

depending on the conflict behavior of applications.
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