
Cache-Conscious Graph Collaborative Filtering on
Multi-socket Multicore Systems

Lifeng Nai1, Yinglong Xia2, Ching-Yung Lin2, Bo Hong1, and Hsien-Hsin S. Lee1

1Georgia Institute of Technology, Atlanta, GA 30332, USA
2IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

{lnai3,bohong,leehs}@gatech.edu1, {yxia,chingyung}@us.ibm.com2

ABSTRACT

Recommendation systems using graph collaborative filtering often
require responses in real time and high throughput. Therefore, be-
sides recommendation accuracy, it is critical to study high perfor-
mance concurrent collaborative filtering on modern platforms. To
achieve high performance, we study the graph data locality char-
acteristics of collaborative filtering. Our experiments demonstrate
that although an individual graph traversal exhibits poor data lo-
cality, multiple queries have a tendency of sharing their data foot-
prints, especially in the case of queries with neighboring root ver-
tices. Such characteristics lead to both inter- and intra-thread data
locality, which can be utilized to significantly improve collabora-
tive filtering performance.

Based on these observations, we present a cache-conscious sys-
tem for collaborative filtering on modern multi-socket multicore
platforms. In this system, we propose a cache-conscious query
scheduling technique and an in-memory graph representation, and
to maximize cache performance and minimize cross-core/socket
communication overhead, we address both inter- and intra-thread
data locality. To address the workload balancing issue, this study
introduces a dynamic work-stealing mechanism to explore the trade-
off between workload balancing and cache-consciousness.

The proposed system was evaluated on a Power7+ system against
the IBM Knowledge Repository graph dataset. The results demon-
strated both good scalability and throughput. Compared with the
basic system that does not perform cache-conscious scheduling,
inter-thread scheduling improves throughput by up to 18%. Intra-
thread scheduling can further improve throughput by as much as
22%. By enabling dynamic work-stealing, the proposed technique
balances workloads across all threads with a low standard deviation
of the per-thread processing time.

Keywords

collaborative filtering; cache-conscious; parallel computing;

1. INTRODUCTION
Numerous e-commerce websites rely on recommendation sys-

tems to help online customers avoid information overload by mak-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CF’14 May 20 - 22 2014, Cagliari, Italy
Copyright 2014 ACM 978-1-4503-2870-8/14/05 $15.00.
http://dx.doi.org/10.1145/2597917.2597935.

ing suggestions regarding which information is the most relevant
to them [1]. To achieve better recommendation results, researchers
have proposed several algorithms. One of the most popular al-
gorithms is collaborative filtering, which they have studied, en-
hanced, and implemented in prior proposals, such as Tapestry [2],
Ringo [3], and Video Recommender [4], using various approaches.

In this paper, instead of focusing on the accuracy of collabora-
tive filtering results, we concentrate on system performance. We
study an item-based collaborative filtering system in which recom-
mendation results are achieved by graph breadth-first-search and
similarity sorting (algorithm details can be found in Section 6.1).
In this system, which requires that a large number of concurrent
queries be processed in real time, throughput is the major consider-
ation. Therefore, data locality and its impact on cache performance
become key optimization goals [5][6][7].

Graph algorithms have poor data locality because of their irreg-
ular access behaviors, which follow a pointer-chasing pattern. Op-
timizing an individual instance of a graph algorithm is known to
be difficult [8][9]. However, for our target collaborative filtering
problem, we observed that although a single query typically shows
poor data locality, multiple queries have a tendency of sharing their
data, which can lead to data locality between inter- and intra-thread
queries. Such locality significantly impacts cache performance and
communication overhead. The impact is both modeled and exper-
imentally measured. We observed significant throughput, which
was the motivation for developing the proposed technique. Mean-
while, we notice that brute-force data locality aware methods tend
to lead to unbalanced workload scheduling. To handle such issues,
we also accounted for the balance between workload balancing and
data locality in the proposed technique.

Based on the above observations, we propose a cache-conscious
implementation of high throughput collaborative filtering. In the
proposed technique, we schedule queries in accordance with their
data locality behaviors to maximize cache performance and min-
imize communication overhead and use a dynamic work-stealing
method to ensure proper balance between cache-consciousness and
workload balancing. Our observations and techniques are not lim-
ited by specific algorithms. Many graph analytic queries tend to
traverse only a subset of the whole graph. In these cases, data local-
ities between different queries also exist. Therefore, our techniques
can easily be generalized to other throughput-oriented graph algo-
rithms and systems.

Finally, to evaluate the proposed methods, we conduct extensive
experiments. Compared to the basic system with simple round-
robin scheduling, our graph representation and workload partition-
ing method achieves good scalability and throughput. With inter-
thread scheduling, the proposed technique can improve through-
put by up to 18% over the basic system. When both inter- and

intra-thread scheduling are applied, the technique achieves 22%
improvement. By enabling dynamic work-stealing, the technique
balances workloads with limited variance in per-thread processing
time. In general, it achieves cache-conscious high-throughput im-
plementation of collaborative filtering.

The main contributions of this paper are as follows:

• To the best of our knowledge, this is the first study of data local-
ity of a collaborative filtering system on modern multi-socket
multicore platforms. We analyze data locality characteristics
between collaborative filtering queries and observe and demon-
strate both inter- and intra-thread data locality.

• We propose a complete cache-conscious implementation of col-
laborative filtering system, which includes an in-memory graph
representation, a lock-free vertex data structure, a cache-conscious
inter- and intra-thread scheduling technique, and a dynamic
work-stealing method.

The rest of the paper is organized as follows. Section 2 ana-
lyzes data locality and workload balancing issues that motivate our
work, and Section 3 provides the details of the implementation.
Section 4 examines our technique for both scalability and through-
put. Section 5 summarizes our work. The last section, Appendix 6,
introduces the baseline collaborative filtering algorithm used in our
work and discusses the background and previous proposals of col-
laborative filtering.

2. MOTIVATION
As a method of predicting user interest, collaborative filtering

has been employed in various previously proposed approaches [2] [3] [4].
Researchers have typically focused more on the accuracy and scal-
ability of such algorithms, overlooking the impact of the cache hi-
erarchy on performance. Because of their random access patterns,
graph collaborative filtering applications typically have poor data
locality. However, in certain situations, data locality may still exist
and enhance system performance. This work uses an item-based
method as the target collaborative filtering system. Each query per-
forms an item-to-item breadth-first-search to find the most relevant
items (refer to Section 6.1 for more details). Although data local-
ity can rarely be found within queries, multiple queries may still
share a significant amount of data. Such data locality, which can be
represented as both inter- and intra-thread locality, improves perfor-
mance. In our target collaborative filtering system, overall through-
put is the major concern. Thus, we should carefully analyze data
locality between queries and its impact on cache performance.

2.1 Data locality
As the major component of collaborative filtering, breadth-first-

search (BFS) is usually considered as a poor data locality opera-
tion [10]. Data access pattern of BFS largely relies on graph dataset
itself. The irregularity in graph edges makes it difficult to exploit
its data locality, leading to poor cache performance. However, dif-
ferent runs of BFS traversal may still share a significant portion of
their accessed data.

To approximately estimate the access behavior of BFS traversal,
the model below is used.

Notations:

Tvertex: total number of vertices accessed in N level BFS traver-

sals

Od: overlapped vertices between two BFS traversals with dis-

tance d

Vk: number of vertices accessed in level k

E: average number of edges per vertex

Figure 1: Example of neighbor queries

N : number of BFS traversal levels

pi: probability of accessing a new vertex in level i

αk: probability of a vertex sharing by two BFS traversals

The number of new vertices accessed in level k will be:

Vk = Vk−1 × E × pk (1)

With V1 = E and pi = 1, we can have

Vk = E
k

k∏

i=1

pi (2)

Therefore, the total number of accessed vertices is:

Tvertex =

N∑

k=1

Vk =

N∑

k=1

E
k

k∏

i=1

pi (3)

Meanwhile, for two BFS traversals with distance d, the vertices ac-
cessed in level below N-d will be overlapped. Besides them, other
vertices are also possible to be overlapped depending on graph
structures. Thus, we can have:

Od =

N−d∑

k=1

Vk +

N∑

k=d

αkVk (4)

As shown in Equation 4, the number of overlapped vertices of
two BFS traversals are decided by two factors, the distance d and
the probability of vertices sharing by two BFS traversals αk. Al-
though the probability αk is a parameter determined by graph dataset,
Equation 4 clearly shows that two BFS traversals can share signifi-
cant amount of vertices if distance is short.

An illustration example is also shown in Figure 1. In this ex-
ample, collaborative filtering query A and B are performing BFS
traversal starting from two different vertices with short distance.
They are considered as neighbor queries. As shown in Figure 1,
these two neighbor queries share significant amount of vertices in
their traversal. Apparently, the overlapped vertices between them
can result in data locality and help cache performance. Mean-
while, such data locality exists between both intra- and inter-thread
queries. The details will be explained in sections below.

2.2 Intra-thread locality
For queries within the same thread, neighbor queries have the po-

tential of sharing their accessed vertices and result in intra-thread
locality. In order to achieve performance benefits from the locality,
the scheduling of intra-thread queries plays a crucial role. Intu-
itively, the neighbor queries should be scheduled together to maxi-
mize benefits of data locality.

Figure 2: Motivation experiments for intra-thread locality (see

text below for explanation of the terms)

In graph traversals, when visiting each vertex, both outgoing
edges and vertex property will be accessed. The total volume of
data accessed when visiting each vertex can be represented as Equa-
tion 5

Notations:

Φ: total accessed data size when visiting a vertex

Se: edge data size in bytes

Sv: vertex property data size in bytes

The total accessed data size will be:

Φ = Se × E + Sv (5)

The dataset used in our collaborative filtering system is the IBM
Knowledge Repository graph dataset (refer to Section 4.1 for more
details). In this dataset, E is around 10, while Se is 24 bytes and
Sv is 48 bytes. Thus, the data size Φ of one vertex is close to
300 bytes. According to Equation 3, the total accessed data size is
around 450 KB for a 4 level BFS traversal, which is almost twice
of L2 cache size and 1/8 of L3 cache size. Therefore, even if two
queries have locality, few other unrelated queries can easily evict
the useful data out of cache and reduce the impact of data locality.
To further explain this observation, two motivation experiments are
performed.

In the first experiment, two different groups of queries are pro-
cessed independently. In both groups, we choose queries with simi-
lar complexity but different distances, neighbor queries in the first
group and random queries in the second one. From the result
shown in Figure 2, we can clearly see that neighbor queries show
a 27.4% improvement of throughput than random queries. It well
supports our intuition that the vertices accessed by neighbor queries
may be significantly overlapped. Such a pattern will result in data
locality and benefit cache performance.

While in the second experiment, these two groups of queries are
processed together in the same thread with different interleaving
patterns. Neighbor queries are coalesced together in the second test
(neighbor coalesce) while queries in the first test are interleaved
randomly (random order). The performance results are shown in
Figure 2. Comparing with random order, simply scheduling neigh-
bor queries together (neighbor coalesce) improves throughput by
13.5%. Although data locality exists between neighbor queries,
processing order of queries still matters. Therefore, in order to
maintain the benefit of data locality, query scheduling must be aware
of intra-thread locality between queries.

2.3 Inter-thread locality

Figure 3: Motivation experiment of different inter-thread

scheduling policies (see text below for details of policies A and

B)

In addition to the intra-thread data locality, neighbor queries of
different threads may also contain data locality, which leads to
inter-thread data locality and brings impact on cross-core/socket
communication overhead.

In multi-socket multicore platforms, besides the overhead due to
cache misses, intensive inter-cache communication can also lead
to significant performance degradation. Memory accesses that hit
remote caches will trigger data transfer across sockets or cores
via cache coherence messages. For data intensive applications,
if different threads are sharing significant amount of data, cache
coherence messages can introduce extra communication overhead.
Worse yet, data ping-pong effect can take place when write oper-
ations are involved. The communication overhead depends on the
underlying cache hierarchy and interconnection structure. For pri-
vate caches within the same chip, the overhead comes from on-chip
interconnection, while for cores of different sockets, it is caused
by inter-socket communication, which is even more severe due to
the limited cross-socket bandwidth. Therefore, inter-thread data lo-
cality and its impact on communication traffic must be taken into
account.

Consider the experiment presented in Figure 3. 32 queries from
two neighborhoods are partitioned into two separate threads run-
ning on cores from different sockets. Two types of scheduling
policies are performed. Neighbor queries (refer to Section B for
definition) are processed by the same thread in policy B, while in
policy A, neighbor queries are divided evenly into two threads with
the same intra-thread order. As shown in Figure 3, by grouping
queries with shared data in the same thread, policy B improves
the throughput by 28.1%, which is in accordance with our pre-
vious explanation. In policy B, most of data accesses do not hit
remote caches. High communication traffic and ping-pong effect
are both avoided. Accordingly, in our proposed collaborative filter-
ing implementation, besides intra-thread data locality, data locality
between threads also needs to be considered to minimize the inter-
cache communication overhead.

2.4 Workload balancing
To fully utilize multi-core architectures, scheduling queries in a

balanced way is crucial [11]. However, the requirement of work-
load balancing is contradicting with data locality considerations,
which presents challenges for workload balancing mechanism.

To explore intra- and inter-thread locality, it is desirable to merge
queries into a small number of threads to improve cache perfor-
mance. However, this would also lead to unbalanced workloads
in these threads. As shown in Figure 4’s example, 10 queries are
requested. Seven of them are from one neighborhood, while the

Figure 4: Example of workload balancing issue

other three are from another remote neighborhood. Considering
inter- and intra-data locality, neighbor queries should be scheduled
back to back together in the same thread. As such, the seven queries
should be processed in thread 0, while the other 3 queries should
be processed in thread 1. In this case, the workload of each thread
is highly unbalanced and heavily loaded thread 0 will take longer
processing time while thread 1 is idle for most of the time.

To address this challenge, we need to dynamically balance work-
load among cores and be aware of both intra- and inter-thread data
locality at the same time. All these tradeoffs must be addressed in
a complete framework to strike an optimal balance.

3. CACHE-CONSCIOUS COLLABORATIVE

FILTERING
Modern computer architectures are becoming more and more

complicated. They usually consist of multi-sockets of multi-core
chips, sophisticated memory hierarchy, and cross-socket/core com-
munication mechanism. To achieve better performance of collab-
orative filtering, we should try to avoid performance bottlenecks.
Applications should aim to maximize the cache hit rate, minimize
the cross-core/cross-socket communication overhead, and balance
the CPU utilization. To achieve these targets, we implement our
collaborative filtering system based on the following components:
(1) a workload partitioning method, (2) an in-memory graph repre-
sentation, (3) a lock-free data structure for concurrent queries, (4)
a cache-conscious query scheduling technique, and (5) a dynamic
work balancing method. The details are explained below.

3.1 Workload partitioning
As mentioned in Section 6.1, the collaborative filtering workload

contains multiple incoming queries that need to be processed in
real time. In order to achieve high throughput and full utilization
of underlying computation resources, the multiple queries need to
be properly partitioned into different threads.

As introduced in Section 6.1, the key operation of collabora-
tive filtering is BFS graph traversal. An intuitive way of workload
partitioning is to partition graph traversal operations. Several par-
allel implementations of the graph traversal algorithm have been
recently proposed, which can traverse graph data on a distributed
system with multiple nodes, or on a single-node multi-core/socket
system [12][13][14][15]. Although all graph traversal algorithms
share significant similarity fundamentally, the traversal operations
in collaborative filtering is accessing only a small subset of the
whole graph with a limited number of hops. It will lead to fine-
grained workload partitioning if we perform partitioning within
graph traversal operations. Consequently, each workload chunk
will be too small to hide the communication and synchronization

Figure 5: In-memory graph representation

overhead between parallel threads. Previously proposed parallel
algorithms become infeasible in this case.

Thus, a coarser grained partitioning method should be used. Con-
sidering the number of incoming queries, partitioning workload at
the granularity of queries becomes another choice. In this way,
sophisticated thread level synchronization and scheduling can be
avoided. The partitioned unit is naturally one query, which is eas-
ier for both scheduling and partitioning. Considering these advan-
tages, query granularity partitioning is used in our proposed collab-
orative filtering implementation.

3.2 In-memory graph representation
Graph operations usually suffer from poor cache performance

due to the dynamic nature of graph datasets. Despite of that, a
proper in-memory representation of graph can still significantly af-
fect the cache performance of graph operations. In our collabora-
tive filtering implementation, data structure should be graph traver-
sal friendly and flexible enough to support timely graph update.
Therefore, we propose a vertex-centric data structure to represent a
graph in memory.

As shown in Figure 5, a vertex is the basic unit of a graph. The
vertex property and the outgoing edges stay within the same vertex
structure. Such a design is in accordance with our graph traversal
pattern. When traversing a graph via BFS, the vertex property and
edges will be accessed together. By organizing them in contigu-
ous memory blocks, cache residents have larger chance of reuse.
Vertices are organized in an adjacency list with hash indices. Each
vertex is indexed by a unique integer vertex id. Compared with a
vector structure, a list does not compromise the cache performance
because of the dynamic vertex access pattern of BFS. Moreover,
unlike vector structure, allocating new vertices only introduce lim-
ited overhead in a list. No extra memory allocation and copy op-
erations are required. Thus, in our implementation, graph is rep-
resented in a two-level structure. In the first level, vertices stay in
a list with hash index, which can benefit graph update. While in
the second level, the vertex property and edges are arranged in a
sequential manner to increase the cache data reuse rate.

3.3 Lock-free vertex data structure for con-
current BFS

BFS in our collaborative filtering system performs graph read
operations most of time. However, several data elements in the
vertex property are still volatile and will be updated during graph
traversal, such as color, traversal depth and path number. Since
graph data are shared by all threads, concurrent queries of different
threads have data races over these volatile data. To solve this issue,
instead of using locks of different granularities, we maintain an
array of volatile data in vertex properties. The array size is the same

Figure 6: Lock-free data structure in each vertex

Figure 7: Illustration of data locality prediction

as the total number of threads. As shown in Figure 6, each thread
will operate only on their own data segment in vertex properties.
Data races are completely avoided without any lock.

Besides, queries in the same thread also have conflicts on volatile
data. The color and depth value updated by the previous query need
to be initialized again before the next query. However, this initial-
ization operation is non-trivial and consumes significant amount of
time. To minimize the overhead from intra-thread data races, we
allocate a unique query ID to each query. An array of query ID
records will be stored in the vertex property together with other
volatile data. It is used to indicate the query ID of last access from
current thread. The query ID allocation is achieved by performing
a simple atomic fetch-and-add operation on a global ID variable.
Hence, the query ID is globally unique and monotonic increased by
time and the global ID variable indicates the number of processed
queries.

3.4 Cache-conscious query scheduling
In order to maximize the benefits of intra- and inter-thread data

locality and workload balancing, we propose a cache-conscious
scheduling technique, in which queries are scheduled according
to the data locality prediction results and balanced by the work-
stealing mechanism. Details of our proposed technique are ex-
plained as following.

3.4.1 Data locality prediction

As a first step of our proposed scheduling policy, a low com-
plexity locality prediction method is used. The method is based on
a simple observation explained in Section 2 that neighbor queries
have higher possibility of sharing data. Considering the fact that
collaborative filtering performs only low-hop BFS, a new query A
is the previous query B’s neighbor if its root vertex was last ac-
cessed by query B. Therefore, queries’ data locality can be reflected

Figure 8: Structure of task buffers in each thread

by root vertices’ access history. Such history record can be obtained
from the query ID record in the vertex property.

As mentioned in the previous section, a query ID is allocated
by the global ID variable and is increased over time. Each vertex
has an array of query ID records corresponding to each thread. For
a new query, if the query ID record of its root vertex shows that
thread X has the largest query ID, it can be inferred that thread X
recently just processed a query which is the neighbor of the cur-
rent query. In this way, we predict data locality according to the
root vertices’ query ID record. The thread with the largest query
ID is predicted to have inter-thread data locality with the current
query. Meanwhile, by comparing global ID variable and query ID
record of a certain query, we can get the information that how many
queries have been processed after a neighbor query. If the differ-
ence is below the threshold G, we can predict that a neighbor was
just processed and intra thread data locality exists.

An illustration example is shown in Figure 7. In this example,
both inter- and intra-thread locality are predicted for a new query
from thread K. The prediction is achieved by processing the query
history information of its root vertex. In the inter-thread locality
prediction, thread X (ID-X) has the largest ID among all query ID
records. Thus, thread X is predicted to have inter-thread locality
with current query. Based on our previous discussion in Section 2,
current query should be processed by thread X. Meanwhile, in the
intra-thread locality prediction in thread K, global ID variable is
compared against ID-K. If the difference is below threshold, cur-
rent query is predicted to have intra-thread locality in thread K and
therefore should have higher priority to be processed.

3.4.2 Cache-conscious scheduling

As discussed in Section 2, both intra- and inter-thread locality
should be considered in our cache-conscious scheduling technique.
To achieve this target, we preform intra- and inter-thread schedul-
ing based on the locality prediction results. As shown in Figure 8,
three task buffers are established in each thread, allocate buffer,
dispatch buffer, and steal buffer. They’re all organized by insertion
order in list data structures. The steal buffer is for the purpose of
workload balancing and will be further explained in the next sec-
tion. The previous two task buffers will be discussed in this section.

Whenever a new query is allocated for the current thread, the
query is appended at the end of its allocate buffer for later schedul-
ing. Meanwhile, a local thread always checks the dispatch buffer

for queries to be processed. If the dispatch buffer is empty, D
queries will be fetched from the allocate buffer for dispatch. The
query dispatch procedure is performed according to the locality
prediction outcome. As explained in previously, the thread with the
largest query ID is predicted to have potential inter-thread locality
with the current query. Therefore, it is inserted into the dispatch

Figure 9: Complete algorithm in detail steps

buffer of the thread with a largest query ID. In this way, queries
will always be dispatched into threads with the highest possibility
of inter-thread data locality. Inter-thread data sharing as well as the
communication overhead are avoided.

For queries inside a local thread’s dispatch buffer, processing by
insertion order obviously is not sufficient. Their processing order
should be decided by considerations of intra-thread data locality.
If a neighbor query is processed recently by the current thread, it
should have higher priority to be processed earlier. Thus, when
processing queries in the dispatch buffer, a local thread will check
the oldest S queries for their query ID records. If the gap between
their query ID records and global ID variable is within threshold
G, the current query is predicted to have intra-thread data locality
with recently processed query. Thus, this query is processed first.
If no qualified queries is found, the original insertion order is used
by fetching queries from the head of the buffer.

3.4.3 Workload Balancing

As discussed in Section 2, data locality intends to coalesce all
queries into fewer threads. To fully utilize hardware resources, a
workload balancing method is necessary. In our proposed imple-
mentation, a dynamic work-stealing technique is used.

A stealing operation is triggered when both the dispatch buffer
and allocate buffer are empty. In that case, a local thread does not
have any workload, neither queries to process or queries to dis-
patch. Instead of waiting for future incoming queries, the local
thread first tries to steal N workloads from others’ allocate buffer
and appended them to its own local steal buffer. As queries pend-
ing for dispatch, stealing them brings only limited negative im-
pact on data locality. These queries will later be processed re-
gardless of their data locality. If no threads’ allocate buffer has
more than N queries, the dispatch buffers having greater than L el-
ements are considered. Those threads usually have accessed more
vertices and hence are getting even higher possibility to get new
dispatched queries. Stealing queries from them can better balance
each thread’s size of accessed data. It will further result in balanc-
ing each thread’s priority of inter-thread data locality. Meanwhile,
stealing granularity N and threshold L can significantly affect steal-
ing aggressiveness. These parameters need to chosen carefully for
tradeoffs between cache-consciousness and workload balancing.

3.4.4 Full Algorithm/Implementation

As explained in previous sections, the complete collaborative fil-
tering implementation is delineated in Figure 9. We now describe
our mechanism in detail steps.

Table 1: Evaluation dataset
Feature Description

Dataset IBM Knowledge Repository graph dataset

Graph type Bipartite graph: users and documents

Vertex Users: 72.3K, Documents: 82.1K

Edge User retrieves document: 1.74M edges

Query Recommend N most relevant documents

1. Intra-thread scheduling: Check dispatch buffer. If it’s empty,
continue to step 2. Otherwise, search front S queries and
process the query whose last processed query ID is within
threshold G of current global ID. If such query cannot be
found, query at the head of the buffer is fetched and pro-
cessed. After processed this query, jump back to the starting
point.

2. Workload balancing: Check steal buffer. If it’s not empty,
fetch head query and process it. Otherwise, continue to step
3.

3. Inter-thread scheduling: If allocate buffer is empty, continue
to step 4. If not, fetch D queries and dispatch them ac-
cording to locality prediction outcome. Locality prediction
is achieved by checking root vertices’ query ID array. The
query will be dispatched to the thread with largest query ID.
Then jump to step 1.

4. Dynamic work-stealing: Randomly check others’ allocate
buffers. If buffer size is longer than N, steal N queries from
the allocate buffer and insert them into local steal buffer. If
fail to find such buffer, check others’ dispatch buffers instead.
If success, steal N queries from the dispatch buffer. Then
jump to step 1 again.

4. EVALUATION

4.1 Evaluation methodology
In our evaluation, experiments were performed on a Power7+

platform with four sockets. Each socket contains eight cores and
four Simultaneous Multi-Threading (SMT) threads per core. In
total, the platform has 32 cores and 128 hardware threads. The
Power7+ processor executes instructions out-of-order and main-
tains 12 execution units shared by four SMT threads. Each core
has 32KB L1, 256KB L2, and 4MB L3 private caches. To avoid
the impact of OS thread scheduling, we bind threads with specific
cores. To maximize utilization of hardware resources, threads are
bound to different sockets first, then different cores. If more than
32 threads are required, SMT threads are utilized.

We ran our experiments on the IBM Knowledge Repository graph
dataset from a document recommendation system used by IBM in-
ternally. In this dataset, two types of vertices, users and documents,
form up a bipartite graph. As shown in Table 1, the graph contains
72.3K users, 82.1K documents, and 1.74M edges. The collabora-
tive filtering query starts from a document and recommend N most
relevant documents.

In the following sections, we evaluate our proposed technique in
three types of experiments. First, a simple multi-threaded collabo-
rative filtering is performed as a basic system. In the basic system,
graph is represented as we proposed in Section 3 and workload is
partitioned at the query granularity. However, queries are allocated
randomly with only a simple round-robin scheduling. Then, we
apply our inter-thread scheduling policy on it with work-stealing

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

P
e

r
T

h
re

a
d
 Q

u
e
ry

 #

Total Query #

Thread 0 Thread 1 Thread 2 Thread 3

Figure 10: Query distribution with work-stealing

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

P
e

r
T

h
re

a
d
 Q

u
e
ry

 #

Total Query #

Thread 0 Thread 1 Thread 2 Thread 3

Figure 11: Query distribution without work-stealing

enabled. After that, intra-thread scheduling is also introduced to
work together with inter-thread scheduling. In each experiment,
throughput, speedup, and scalability are analyzed in details.

4.2 Experimental Results

4.2.1 Necessity of work-stealing

In our proposed technique, inter-thread data locality is the ma-
jor consideration when scheduling queries across threads. How-
ever, considering only inter-thread locality, it intends to combine
queries into few threads and results in unbalanced workloads. To
address this issue, a dynamical work-stealing method is used to
ensure workload balancing among threads. In order to show the
impact of our dynamic work-stealing mechanism, an experiment
with four threads are performed. In the experiment, 200 queries
are performed with our inter-thread scheduling technique and the
number of processed queries over time for each thread is collected.
As shown in Figure 11, without dynamic work-stealing, queries
are well distributed over all threads at the early stage. However,
when time goes by, it shows extremely unbalanced query distribu-
tion. Conversely, in Figure 10, queries are well balanced across
all threads when dynamic work-stealing is enabled. Therefore, our
dynamic work-stealing mechanism is enabled in all following ex-
periments to avoid impact of unbalanced workloads.

4.2.2 Cache-conscious scheduling

In the experiments of this section, we randomly generate 32,768
queries. To better estimate system throughput, all queries are streamed
into our collaborative filtering system in a burst way for the stress
testing purpose. For the scalability analysis purpose, different num-
bers of threads were evaluated, starting from one to 64 threads.
Since there are only 32 cores in our evaluation platform, we do
not further perform experiments for 128 threads. Because the SMT

Figure 12: Normalized throughput

Figure 13: Speedup over single thread

threads share the same core’s cache resources and therefore cannot
well demonstrate the impact of cache related techniques. To sim-
plify the notation, we denote the basic system, inter-thread schedul-
ing, and intra-thread scheduling (with inter-thread scheduling) as
base, inter, and intra.

The throughput results of three types of experiments are shown
in Figure 12. The throughput number is calculated based on the
average time per query. To better scale the results, they are all nor-
malized to the basic system’s throughput. From the results, we can
see that the inter-thread scheduling alone can achieve up to 14%
throughput improvement with 32 threads, while the intra-thread
scheduling can further improvement that number to 16%. For the
single thread, the inter-thread cannot bring any benefit and intra-
thread shows limited benefit due to the constraint of the intra-thread
search distance and a huge number of incoming queries. When the
thread number is increased from two to 32, the throughput benefits
of both inter- and intra-thread scheduling are increasing monotoni-
cally. That is because cross-core/socket communication overheads
become more severe with more cores involved. However, for 64
threads, the improvement decreases slightly. It is in accordance
with underlying hardware architecture. When more than one SMT
thread are utilized in each core, the communication overhead still
remains unchanged while the scheduling overhead increases with
the number of threads.

The speedup results are shown in Figure 13. The overall process-
ing time of all queries are measured and calculated as the speedup
over a single-thread basic system. As shown, the speedup increases
with the number of threads in all three types of experiments. Inter-
thread scheduling achieves better performance than the basic sys-
tem while an even better speedup is achieved with intra-thread schedul-
ing. The detailed improvement of both inter- and intra-scheduling
is illustrated in Figure 14, in which the speedup over the basic sys-
tem is shown. As shown in Figure 14, the improvement of the intra-

Figure 14: Improvement of inter- and intra-thread scheduling

Figure 15: Scalability result

thread scheduling reaches as high as 22% for 32 threads. With 32
threads, the inter-thread scheduling also achieves the largest im-
provement of 18%. Besides, the improvement is increasing mono-
tonically from 2 threads to 32 threads with a jump at 16 threads.
This is because the improvement of the inter-thread scheduling is
achieved by reducing communication traffic across cores. With
more cores, the cross-core traffic overhead is more severe. More-
over, when core number is larger than 8, the cross-socket traffic
is involved and brings much larger overhead. Nevertheless, when
the number of threads is increased to 64, the improvement drops
back to 14.3%. This is caused by the SMT threads in the same
core. They share caches and interfere against each other. In this
case, both our inter- and intra-thread scheduling becomes infeasi-
ble within the same core.

Figure 15 plots at a log scale to show the scalability of our pro-
posed technique. As shown in the results, our methods are show-
ing close to perfect scalability except for the case of 64 threads,
in which the SMT threads over utilize the hardware resources and
bring negative impact on the scalability. Besides, intra-thread schedul-
ing further improves the scalability slightly.

4.2.3 Workload balancing

To further prove the effectiveness of our work-stealing method,
we use the standard deviation and relative standard deviation of
per thread processing time as the metric to measure workload bal-
ancing. We calculated the standard deviation from the processing
time results of each thread in previous scalability experiments. The
standard deviation results range from 1.6 to 3.1. Compared with
the long processing time of each thread, it shows relatively small
variance. Meanwhile, the relative standard deviation results are all
below 10%. Such result indicates that our proposed mechanism
reaches good workload balancing.

5. CONCLUSION AND DISCUSSION
In this paper, we studied high-throughput collaborative filtering

on modern multi-socket multicore platforms. Our analysis and ex-
periments showed that an individual query of collaborative filtering
exhibits suboptimal data locality, but when multiple queries were
processed, data locality was exhibited at both inter- and intra-thread
levels. We also observed that the locality consideration usually con-
tradicted the workload balancing requirements, which revealed a
tradeoff between these two factors.

Based on the above observations, we presented a cache-conscious
implementation for a collaborative filtering system. In this system,
we first proposed an in-memory graph representation that achieved
a balance between locality and flexibility and then presented a data
locality prediction method based on the query ID record. With
the data locality prediction results, we presented a cache-conscious
scheduling technique that scheduled queries within and between
threads in accordance with the intra- and inter-thread data locality,
respectively. To balance the workload among the threads, we also
introduced a dynamic work-stealing mechanism. By stealing dy-
namically, the mechanism rescheduled queries across threads, im-
proving the overall workload balance.

Our study showed useful observations for the data locality be-
havior of graph algorithms. To improve throughput and scalability,
it exploited the locality between queries. In the experiments on
the Power7+ platform, our proposed technique demonstrated high
throughput and good scalability and improved performance by as
much as 22% over the basic system.

In the evaluation experiments, we used a Power7+ platform, which
features private L3 caches. However, several other platforms such
as Intel Xeon processors feature shared L3 caches. Compared to
private caches, shared L3 caches lead to smaller communication
overhead within the same chip. In this case, the impact of our
proposed inter-thread scheduling technique is less significant when
the number of threads is small. Nevertheless, because of the large
overhead of cross-socket communication, the inter-thread schedul-
ing technique still has significant impact as the number of threads
increases.

Although our work focuses on system throughput, our solution
can also be easily extended to address other scheduling schemes
with minor changes. For example, to better support fairness re-
quirements, we can add a simple timer mechanism that ensures
maximum waiting time of each query or an epoch refresher that re-
freshes the system status before each epoch. Depending on specific
datasets and query types, fairness requirements sometimes nega-
tively impact system throughput. Throughput and fairness require-
ments pose an interesting tradeoff, which will be further analyzed
in our future work. Moreover, in large-scale distributed systems,
similar behaviors of data locality may exist at different scales. In
our future work, we plan to also analyze inter-query locality behav-
iors in large-scale systems.

6. APPENDIX

6.1 Baseline Collaborative Filtering System
We use the following notations to briefly describe our document

recommendation system which is essentially a collaborative filter-
ing. Given a set of documents D and a set of users U , we build
an edge between d ∈ D and u ∈ U as long as the document d is
retrieved by user u. By normalizing the total number of retrievals
of d with respect to u, we have an edge weight wd,u ∈ W . There-
fore, we have a weighted bipartite graph G(D,U,E,W), where
E = {(d, u)|d ∈ D,u ∈ U,wd,u 6= 0}. Given the weighted

bipartite graph G and a root vertex dr ∈ D, the collaborative fil-
ter returns a list of relevant documents R ⊂ D. Simply speaking,
the relevance between document dr and d′ is measured by the total
weight of edges in the paths from dr to d′, that is,

sd′ =
∑

(v1,v2)∈∪l
dr→d′

wv1,v2 , ∀ldr→d′ (6)

where lr→d′ represents a path from dr to d′. Note that when the
path length is 2 and the edges have equal weight, the relevance is
equivalent to the number of users reading both documents. In prac-
tice, a collaborative filtering system must handle multiple queries
simultaneously. Thus, there is a list of roots to process. The collab-
orative filter that schedules those queries out of order for improving
the overall throughput is called collective collaborative filter. Note
that the algorithm works on arbitrary graphs, although the appli-
cation scenario requires them to be bipartite. Such algorithm is
also internally used in IBM Knowledge Repository, a large scale
enterprise-wide document database.

Algorithm 1 Collective graph collaborative filtering

Input: weighted bipartite graph G(D,U,E,W), query root set
Q, request capacity N

Output: result setR = {Rr}
1: for all r ∈ Q do

2: Lr = {r}, srv = 0, nr = 0, crv = rand()

{BFS-like weight propagation}
3: while Lr 6= ∅ and n < N do

4: L′

r = ∅
5: for v ∈ Lr do

6: for v′ ∈ Γv do

7: if crv′ 6= crv then

8: crv′ = crv , L′

r ← v′

9: srv′ = stv + wv,v′

10: end if

11: end for

12: end for

13: Lr = L′

r , Rr = Rr ∪ L′

r , nr = nr + |L
′

r|
14: end while

15: end for

Algorithm 1 is an approximate implementation of the above col-
laborative filter, which forms the foundation of our work in this
paper. It works in batch mode by processing a set of queries, each
starting from a document in set Q. For each query, the algorithm
returns no less than N relevant documents, if they can be found. In
a query rooted at r, we let srv denote the relevance score which is
initialized to 0. nr counts the number relevant documents to return.
crv receives a random flag associated with a query from the random
flag generator rand(), which indicates if a vertex has been vis-
ited in the query with the same flag. The use of a random flag is to
spare flag cleaning for future traversal. Lines 3-14 are essentially
a BFS-like traversal for propagating the score srv to each vertex.
In Line 8, we propagate the random flag and put the newly visited
vertex into L′

r for the next iteration. Line 9 updates the relevance
score according to Eq. 6. In Line 13, the parameters are updated for
checking the termination status. Note that the scored vertices are
ranked in some appliations, where the vertices closer to the root is
ranked at a higher position; while the vertices at the same BFS level
are ranked (sorted) according to their scores. We omit the ranking
process in the algorithm, as it is quite trivial.

6.2 Background and related work

Collaborative filtering (CF) has been studied in a number of ap-
proaches and implemented with various focuses. For example, the
item based collaborative filtering systems identify users with sim-
ilar interest spaces or objects (say, documents) with similar char-
acteristics. It assumes that the items favored by users with similar
interest space is potentially recommendable to the new users with
similar interest space. Such approach motives us to model users’
interest spaces or characteristic clusters of objects.

An earlier implementation of collaborative filtering is Tapestry [2],
which relies on the explicit opinions of people from a close-knit
community. However, it is not practical in larger communities to
assume each person knowing the others. A pseudonymous collab-
orative filtering solution for Usenet news and movies was proposed
by GroupLens research system [16][17]. Ringo [3] and Video Rec-
ommender [4] generate recommendations on music and movies,
respectively. More different collaborative filtering systems can be
found in a special issue of the Communications of the ACM [18].

In addition to the item based approaches, Bayesian networks,
clustering, and Horting are also used in recommendation systems.
Bayesian networks create a model based on a training data set which
can be built offline for hours or even days. The resulting model is
small, fast, and essentially as accurate as the nearest neighbor meth-
ods [19]. Horting is based on graphs, where the nodes represent
users and edges indicate similarity between two users [20]. Predic-
tions are produced by walking the graph to nearby nodes and com-
bining the opinions of the nearby users. In 2011 ACM KDD CUP
contest, there is a collaborative filtering solution that addresses the
unique item taxonomy characteristics and dataset volume. This
proposed technique is implemented as part of GraphLab’s collab-
orative filtering library [21]. All the above collaborative filtering
implementations focus on providing rich functionality to data an-
alytics, where the map of the algorithm onto particular proces-
sor/system architectures are not addressed properly.

In contrast to the existing work on collaborative filtering, we
focus on the cache-consciousness issue of a straightforward item-
based approach. It is performed towards a document recommenda-
tion system in the IBM Knowledge Repository. In this application,
the system must concurrently handle a large number of queries in
real time. To achieve the requirements of target system, we propose
a cache-conscious graph collaborative filtering technique.

Data sharing in general applications is a common topic in vari-
ous prior works. However, the special data representation and ac-
cess pattern of graph operations contain unique features. Therefore,
directly applying the solutions of general applications is typically
infeasible in graph systems. In our work, we performed the first
study of data locality behaviors in a collaborative filtering system.
By making use of the data locality between inter- and intra-thread
graph queries, our proposed technique achieves high throughput
and good scalability.

7. REFERENCES

[1] G. Linden, B. Smith, and J. York, “Amazon.com
recommendations: item-to-item collaborative filtering,”
Internet Computing, IEEE, vol. 7, no. 1, pp. 76–80, 2003.

[2] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using
collaborative filtering to weave an information tapestry,”
Commun. ACM, vol. 35, no. 12, pp. 61–70, Dec. 1992.

[3] U. Shardanand and P. Maes, “Social information filtering:
algorithms for automating word of mouth,” in Proceedings of

the SIGCHI Conference on Human Factors in Computing

Systems, ser. CHI ’95. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1995, pp. 210–217.

[4] W. Hill, L. Stead, M. Rosenstein, and G. Furnas,
“Recommending and evaluating choices in a virtual
community of use,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, ser.
CHI ’95. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1995, pp. 194–201.

[5] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley,
and J. I. Munro, “Cache-oblivious priority queue and graph
algorithm applications,” in Proceedings of the Thiry-fourth

Annual ACM Symposium on Theory of Computing, ser.
STOC ’02. New York, NY, USA: ACM, 2002, pp. 268–276.

[6] R. E. Ladner, J. D. Fix, and A. LaMarca, “Cache
performance analysis of traversals and random accesses,” in
Proceedings of the Tenth Annual ACM-SIAM Symposium on

Discrete Algorithms, ser. SODA ’99. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1999,
pp. 613–622.

[7] V. K. Pingali, S. A. McKee, W. C. Hseih, and J. B. Carter,
“Computation regrouping: Restructuring programs for
temporal data cache locality,” in Proceedings of the 16th

International Conference on Supercomputing, ser. ICS ’02.
New York, NY, USA: ACM, 2002, pp. 252–261.

[8] G. Cong and S. Sbaraglia, “A study on the locality behavior
of minimum spanning tree algorithms,” in Proceedings of the

13th International Conference on High Performance

Computing, ser. HiPC’06. Berlin, Heidelberg:
Springer-Verlag, 2006.

[9] D. A. Bader, G. Cong, and J. Feo, “On the architectural
requirements for efficient execution of graph algorithms,” in
Proceedings of the 2005 International Conference on

Parallel Processing, ser. ICPP ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 547–556.

[10] L. Yuan, C. Ding, D. Tefankovic, and Y. Zhang, “Modeling
the locality in graph traversals,” in Parallel Processing

(ICPP), 2012 41st International Conference on, 2012, pp.
138–147.

[11] S. Krishnamoorthy, U. Catalyurek, J. Nieplocha, and
P. Sadayappan, “An approach to locality-conscious load
balancing and transparent memory hierarchy management
with a global-address-space parallel programming model,” in
Parallel and Distributed Processing Symposium, 2006.

IPDPS 2006. 20th International, 2006, pp. 8 pp.–.

[12] D. Bader and K. Madduri, “Designing multithreaded
algorithms for breadth-first search and st-connectivity on the
cray mta-2,” in Parallel Processing, 2006. ICPP 2006.

International Conference on, 2006, pp. 523–530.

[13] A. Yoo, E. Chow, K. Henderson, W. McLendon,
B. Hendrickson, and U. Catalyurek, “A scalable distributed
parallel breadth-first search algorithm on bluegene/l,” in
Supercomputing, 2005. Proceedings of the ACM/IEEE SC

2005 Conference, 2005, pp. 25–25.

[14] B. Derbel and M. Mosbah, “Distributed graph traversals by
relabelling systems with applications.”

[15] B.-Y. Su, T. Brutch, and K. Keutzer, “Parallel bfs graph
traversal on images using structured grid,” in Image

Processing (ICIP), 2010 17th IEEE International Conference

on, 2010.

[16] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R.
Gordon, and J. Riedl, “Grouplens: applying collaborative
filtering to usenet news,” Commun. ACM, vol. 40, no. 3, pp.
77–87, Mar. 1997.

[17] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and

J. Riedl, “Grouplens: an open architecture for collaborative
filtering of netnews,” in Proceedings of the 1994 ACM

conference on Computer supported cooperative work, ser.
CSCW ’94. New York, NY, USA: ACM, 1994, pp.
175–186.

[18] P. Resnick and H. R. Varian, “Recommender systems,”
Commun. ACM, vol. 40, no. 3, pp. 56–58, Mar. 1997.

[19] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical
analysis of predictive algorithms for collaborative filtering,”
in Proceedings of the Fourteenth conference on Uncertainty

in artificial intelligence, ser. UAI’98. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1998, pp. 43–52.

[20] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu, “Horting
hatches an egg: a new graph-theoretic approach to
collaborative filtering,” in Proceedings of the fifth ACM

SIGKDD international conference on Knowledge discovery

and data mining, ser. KDD ’99. New York, NY, USA:
ACM, 1999, pp. 201–212.

[21] Y. Wu, Q. Yan, D. Bickson, Y. Low, and Q. Yang, “Efficient
multicore collaborative filtering,” in ACM KDD CUP

workshop, 2011.

